#### **COPYRIGHT NOTICE**

This geotechnical log and its associated data (the Document) is licensed by the Queensland Department of Transport and Main Roads under the <u>Creative Commons Attribution 4.0 Licence</u> (CC BY 4.0). When reusing the Document, in whole or in part, please attribute the Department as follows: "(c) State of Queensland (Department of Transport and Main Roads) 2020, licensed under the CC BY 4.0 Licence". This licence does not apply to the Queensland Government logo or trademarks.

#### **LIMITATION OF LIABILITY**

The CC BY 4.0 Licence contains a comprehensive Disclaimer of Warranties and Limitation of Liability. In addition, please note that this Document was prepared for Departmental use only. Reuse of the Document by anyone for any other purpose could result in error and/or loss. You should obtain professional advice before making decisions based on the contents of the Document.

When reproducing any part of this Document, you must also reproduce this limitation of liability notice in addition to the italicised attribution statement above.

Retrieved from the Queensland Geotechnical Database <a href="http://qgd.org.au/">http://qgd.org.au/</a>



# ENGINEERING BOREHOLE LOG

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/6-2010 
 BOREHOLE No
 BH C33

 SHEET
 \_ 1 \_ of \_ 3 \_

 REFERENCE No
 \_ H11123 \_

| PRO         | JECT                                                                | Bruce Highway Upgrade (Cooroy to Curra) Section C |                           |          |                                                                                                                                                                                                                                                                                                                                               |                                     |                         |                           |               |                                                                                                          |           |  |
|-------------|---------------------------------------------------------------------|---------------------------------------------------|---------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------|---------------------------|---------------|----------------------------------------------------------------------------------------------------------|-----------|--|
|             |                                                                     | Cut 9                                             | 2                         |          |                                                                                                                                                                                                                                                                                                                                               | COORDINATES 471732.2 E; 7094413.1 N |                         |                           |               |                                                                                                          |           |  |
| PROJECT No  |                                                                     | <u>FG5799</u>                                     |                           |          | SURFACE R.L. <u>85.10m</u> PLUNGE <u>-90°</u>                                                                                                                                                                                                                                                                                                 |                                     | DATE STARTED _18/7/11 G |                           |               | 11 GRID DATUM MGA94                                                                                      |           |  |
| JOB No      |                                                                     | 232/10A/2                                         |                           |          | HEIGHT DATUMAHD BEARING                                                                                                                                                                                                                                                                                                                       |                                     | DATE COM                | IPLETED _                 | <u> 19/7/</u> | DRILLER _Drillsure Pty I                                                                                 | <u>td</u> |  |
| O DEPTH (m) | R.L.<br>(m)<br>85.10                                                | CASING WASH BORING CORE DRILLING                  |                           | SAMPLE   | MATERIAL  DESCRIPTION  TOPSOIL: Brown, organic.                                                                                                                                                                                                                                                                                               | USC                                 | INTACT<br>STRENGTH      | DEFECT<br>SPACING<br>(mm) | GRAPHIC LOG   | ADDITIONAL DATA  AND  TEST RESULTS                                                                       | SAMPLES   |  |
|             | 84.10                                                               |                                                   |                           |          | Silty CLAY (Residual): Brown, fine grained, moist, intermediate to high plasticity.                                                                                                                                                                                                                                                           | (CI-<br>CH)                         |                         |                           |               | — Becoming gravelly  30/100                                                                              | -         |  |
| -<br>-<br>- | 83.55                                                               |                                                   |                           | Α        | SILTSTONE (XW): Generally exhibits engineering properties of a brown, moist, hard, medium to high plasticity silty clay.                                                                                                                                                                                                                      | xw                                  |                         | -<br>-<br>-<br>-          |               | N>50                                                                                                     | SPT -     |  |
| -2          |                                                                     |                                                   | (10)                      |          | SILTSTONE (MW): Brown/grey, fine grained, subtly foliated, generally medium strength, indurated and/or slightly metamorphosed.                                                                                                                                                                                                                |                                     |                         |                           |               | Is(50) = 0.37MPa<br>Is(50) = 0.84MPa                                                                     | x -       |  |
| Ė.          |                                                                     |                                                   | 100                       |          | Defects: -Broken and clayey zones throughout.                                                                                                                                                                                                                                                                                                 |                                     |                         |                           |               |                                                                                                          | -         |  |
| 3           | 11.1                                                                |                                                   | (13)                      |          | -Joint at 5°-10° (10/m) -Joint at 20° (4-5/m) -Joint at 35° (4/m) -Joint at 60° (1/m) -Joint at 75° (2/m)  Defects are generally medium spaced.                                                                                                                                                                                               |                                     |                         |                           |               | ─ J, 75°, Pl, T, Clnf<br>──XW Clay Seam                                                                  | -         |  |
| -4          |                                                                     |                                                   | 100                       |          | Defect surfaces are generally planar, tight or                                                                                                                                                                                                                                                                                                |                                     |                         |                           |               |                                                                                                          | -         |  |
| 5 - T       |                                                                     |                                                   | (39)                      |          | open, smooth, clay infilled.                                                                                                                                                                                                                                                                                                                  |                                     |                         |                           |               | -BZ<br>Is(50) = 0.55MPa                                                                                  | X         |  |
| 5           |                                                                     |                                                   | 100<br>(55)               |          |                                                                                                                                                                                                                                                                                                                                               | MW                                  |                         |                           |               | Is(50) = 0.48MPa  Is(50) = 0.47MPa  Is(50) = 0.47MPa  Is(50) = 0.25MPa; *  DD = 2.46t/m³; WD = 2.54t/m³; | 0 2       |  |
| 6           |                                                                     |                                                   | 100                       |          |                                                                                                                                                                                                                                                                                                                                               |                                     |                         |                           |               | MC = 3.2%; UCS=18.4MPa                                                                                   |           |  |
| 3           |                                                                     |                                                   |                           |          |                                                                                                                                                                                                                                                                                                                                               |                                     |                         | -                         |               |                                                                                                          | ] -       |  |
|             |                                                                     | -                                                 | (0)                       | $\times$ |                                                                                                                                                                                                                                                                                                                                               |                                     |                         |                           |               |                                                                                                          |           |  |
| 8           |                                                                     |                                                   | (0)                       |          |                                                                                                                                                                                                                                                                                                                                               |                                     | -                       | -                         |               | - CLY BZ                                                                                                 |           |  |
|             | 76.82                                                               |                                                   |                           | $\geq$   |                                                                                                                                                                                                                                                                                                                                               | _                                   |                         |                           |               |                                                                                                          |           |  |
| 9           |                                                                     |                                                   | 88<br>(16)<br>100<br>(34) |          | SANDSTONE (MW): Brown, fine to coarse grained, massive, low to medium strength, indurated and/or slightly metamorphosed. Defects: -Joint at 5°-10° (2/m) -Joint at 45° (1-2/m) -Joint at 60°-70° (~5/m) -Joint at 80°-85° (2/m) Defects are generally medium spaced. Defect surfaces are generally planar or irregular, tight, clay infilled. | MW                                  |                         |                           |               | J, 80°-85°, PI, T, Cinf  —XW Clay Seam  J, 70°-75°, PI, T, Cinf Is(50) = 0.53MPa  Is(50) = 0.24MPa       | -         |  |
| 10          | DEMA DV                                                             | *Pair                                             | ı<br>ıt load fail         | led a    | long existing defect.                                                                                                                                                                                                                                                                                                                         | AC 22                               |                         | 11                        |               | LOGGED BY                                                                                                |           |  |
| r           | REMARKS *Point load failed along existing defect.  LOGGED BY  JA/DC |                                                   |                           |          |                                                                                                                                                                                                                                                                                                                                               |                                     |                         |                           |               | -                                                                                                        |           |  |



# ENGINEERING BOREHOLE LOG

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/6-2010

 BOREHOLE No
 BH C33

 SHEET
 2 of 3

 REFERENCE No
 H11123

|             |                                             |            |        |                                                                                                                                                                                                                                                         | . <b>–</b> – |                 |        |             | OORDINATES 471732.2 E; 7094413                                 |         |
|-------------|---------------------------------------------|------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|--------|-------------|----------------------------------------------------------------|---------|
|             |                                             |            |        | SURFACE R.L. <u>85.10m</u> PLUNGE <u>-90</u><br>HEIGHT DATUM <u>AHD</u> BEARING                                                                                                                                                                         |              |                 |        |             |                                                                |         |
| R.L.<br>(m) | VGEK<br>VSING<br>ASH BORING<br>ORE DRILLING | RQD<br>()% | SAMPLE | MATERIAL<br>DESCRIPTION                                                                                                                                                                                                                                 | SC           | INTACT STRENGTH | (mm)   | GRAPHIC LOG | ADDITIONAL DATA  AND  TEST RESULTS                             | SAMPLES |
| 10 75.10    | 111                                         | REC %      | ŝ      | SANDSTONE (MW): Cont'd                                                                                                                                                                                                                                  |              | 1               | 700000 | <u>R</u>    | Is(50) = 1.37MPa                                               |         |
| 74.80       |                                             | 100        |        | SILTSTONE (MW): Grey, fine grained, subtly foliated, mainly                                                                                                                                                                                             | MW           |                 |        |             |                                                                | -       |
| 11          |                                             | 100        |        | medium strength. Indurated and/or slightly metamorphosed. Defects: -Joint at 5°-10° (3/m) -Joint at 40°-45° (2-3/m) -Joint at 60°-70° (2/m)                                                                                                             |              |                 |        |             | le(50) = 0.75MPa                                               |         |
| 12          |                                             | (76)       |        | Defects are generally close to medium spaced Defect surfaces are planar or irregular, tight or open, smooth, clay infilled.                                                                                                                             |              |                 |        |             | Is(50) = 0.75MPa<br>DD = 2.33t/m³; MC = 3.2%;<br>UCS=5.57MPa   | LIC     |
| 13          |                                             | 100        |        |                                                                                                                                                                                                                                                         | MW           |                 |        |             |                                                                |         |
| 14          |                                             | 100        |        |                                                                                                                                                                                                                                                         |              |                 |        |             |                                                                |         |
| 69.66       |                                             | (28)       |        |                                                                                                                                                                                                                                                         |              |                 |        |             | □ – J, 80°-85°, I, T, Cinf □ – HW Clayey Zone Is(50) = 1.15MPa | ×       |
| 69.66       |                                             | 100        |        | 0.1.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.                                                                                                                                                                                                                |              |                 |        |             | Is(50) = 1.30MPa                                               | 0.      |
| 6           |                                             | (41)       |        | SANDSTONE (MW): Grey/brown, fine to medium grained, massive, high strength, indurated and/or slightly metamorphosed.  Defects: -Joint at 15°-20° (5/m)                                                                                                  |              |                 |        |             | J. 80°-85°, PI, O, S, Clnf, Broken                             |         |
| 7           |                                             | 100        |        | -Joint at 30° (3/m) -Joint at 45°-50° (2/m) -Joint at 80°-85° (1-2/m)                                                                                                                                                                                   |              |                 |        |             | Is(50) = 1.79MPa<br>Is(50) = 2.03MPa                           | ×       |
| 8           |                                             |            |        | Defect spacing is close to medium. Defect surfaces are generally planar or irregular, tight or open, slightly rough, clay infilled.  Includes occasional conglomerate bands throughout. Pebble fraction is subrounded with particles sizing up to 25mm. | MW           |                 |        |             | – CLy BZ                                                       |         |
| 9           |                                             | (41)       |        |                                                                                                                                                                                                                                                         |              |                 |        |             |                                                                |         |
|             |                                             |            |        |                                                                                                                                                                                                                                                         |              |                 |        |             | Is(50) ≃ 1.04MPa<br>- J, 80°-85°, T, Cinf                      | x<br>o  |



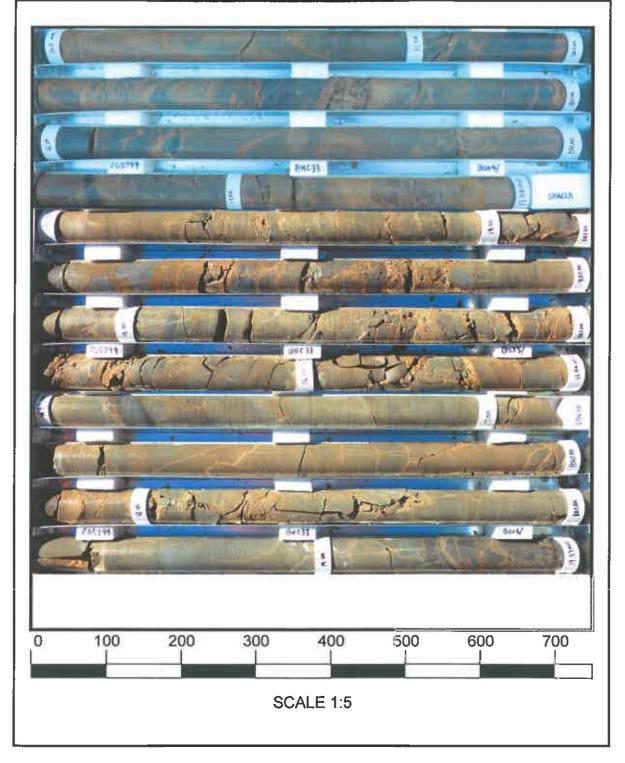
# ENGINEERING BOREHOLE LOG

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/6-2010 

|                                   |                                                                                       | HEIGHT DATUM AHD BEARING                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|-----------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| R.L. (m)                          | AUGER<br>CASING<br>CASING<br>WASH BORING<br>CORE DRILLING<br>CORE DRILLING<br>SAMPI F | MATERIAL<br>DESCRIPTION                                                                                                                               | INTACT DEFECT STRENGTH SPACING (mm) 1000 SWELL WITH SPACING (Mm) 1000 SWELL WITH SPACING SWELL WITH SWELL WITH SPACING SWELL WITH SPACING SWELL WITH S | ADDITIONAL DATA  AND TEST RESULTS  SAMPLES  SAMPLES  TESTS  TESTS |  |  |  |  |  |  |  |
| 20 65.10                          | 100                                                                                   | SANDSTONE (MW): Cont'd                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Is(50) = 2.43MPa o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| -21                               | 100 (29)                                                                              |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|                                   |                                                                                       | SANDSTONE (SW): Grey/brown, fine to medium grained, massive, high to very high strength, indurated and/or slightly metamorphosed.  Defects: As above. | sw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| -23                               |                                                                                       | Delects. As above.                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| 61.65                             | 100                                                                                   |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Is(50) = 4.55MPa x<br>1s(50) = 8.07MPa o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| -24<br>25<br>26<br>27<br>28<br>29 |                                                                                       | Borehole terminated at 23.45m                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| 30                                | a *Daint land failed                                                                  | along existing defect                                                                                                                                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LOGGED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
| KEMARK:                           | REMARKS *Point load failed along existing defect.  LOGGED BY  JA/DC                   |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |



## CORE PHOTO LOG BH C33


| Project Name:  | BRUCE HIGHWAY UPGRADE - SECTION C |                   |            |  |  |  |
|----------------|-----------------------------------|-------------------|------------|--|--|--|
| Project No.:   | FG5799                            | Date:             | 08/09/2011 |  |  |  |
| Details:       | Cut 9                             | Start Depth (m):  | 1.55       |  |  |  |
| Reference No.: | H11123                            | Finish Depth (m): | 23.45      |  |  |  |





#### **CORE PHOTO LOG - BH C33**

| Project Name:  | BRUCE HIGHWAY UPGRADE - SECTION C |                   |            |  |  |
|----------------|-----------------------------------|-------------------|------------|--|--|
| Project No.:   | FG5799                            | Date:             | 08/09/2011 |  |  |
| Details:       | Cut 9                             | Start Depth (m):  | 1.55       |  |  |
| Reference No.: | H11123                            | Finish Depth (m): | 23.45      |  |  |



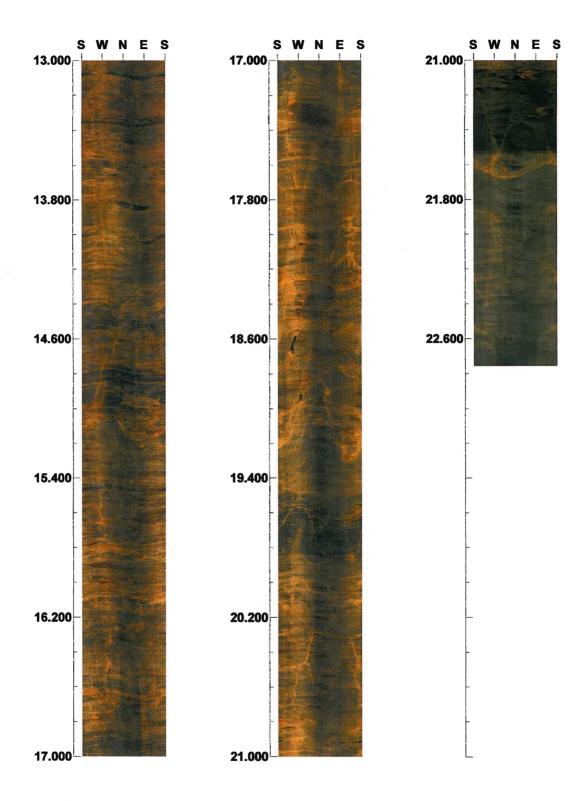
DEPARTMENT OF TRANSPORT & MAIN ROADS Geotechnical Branch 35 Butterfield Street, HERSTON Qld 4006 Phone 07 3115 3035 Fax 07 3115 3011



#### **CORE PHOTO LOG - BH C33**

| Project Name:  | BRUCE HIGHWAY UPGRADE - SECTION C |                   |            |  |  |
|----------------|-----------------------------------|-------------------|------------|--|--|
| Project No.:   | FG5799                            | Date:             | 08/09/2011 |  |  |
| Details:       | Cut 9                             | Start Depth (m):  | 1.55       |  |  |
| Reference No.: | H11123                            | Finish Depth (m): | 23.45      |  |  |



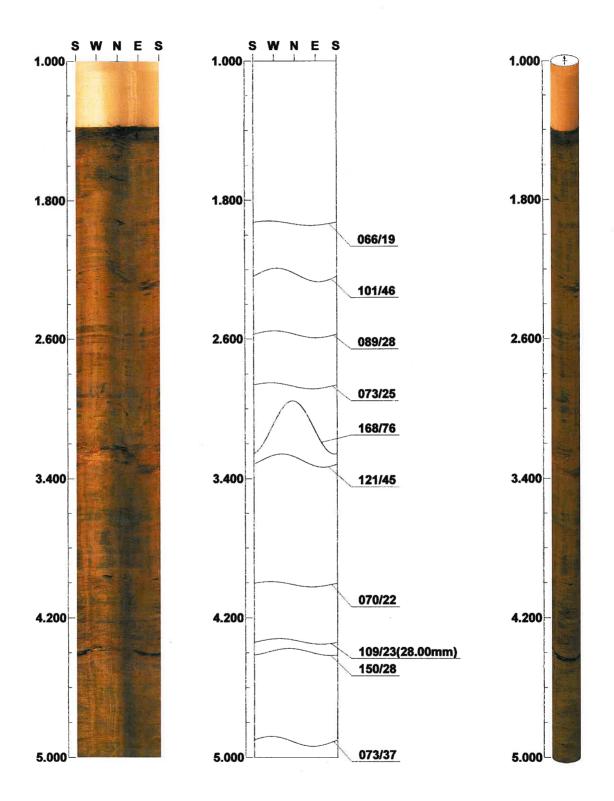

Bore hole No.: C-33 Azimuth: 0 Inclination: -90

Depth range: 1.000 - 13.000 m



Bore hole No.: C-33 Azimuth: 0 Inclination: -90

Depth range: 13.000 - 22.754 m

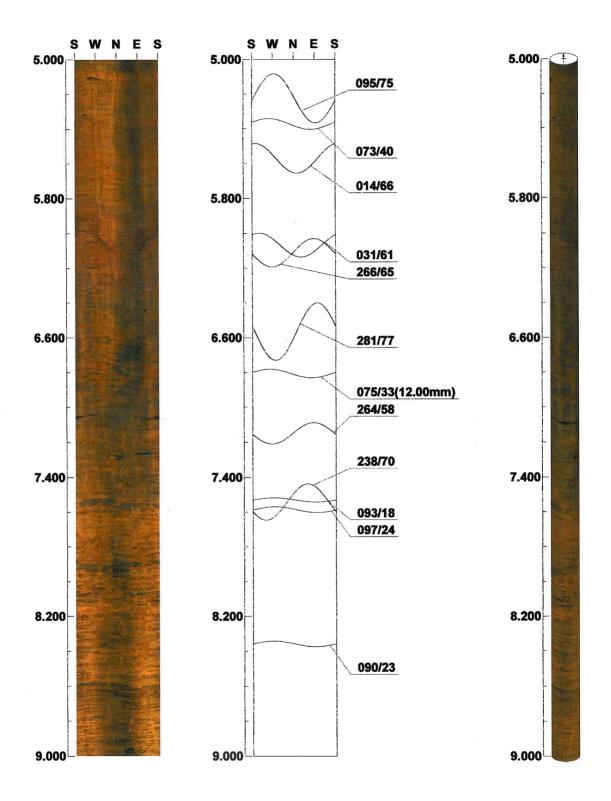



Bore hole No.: C-33

Azimuth: 0

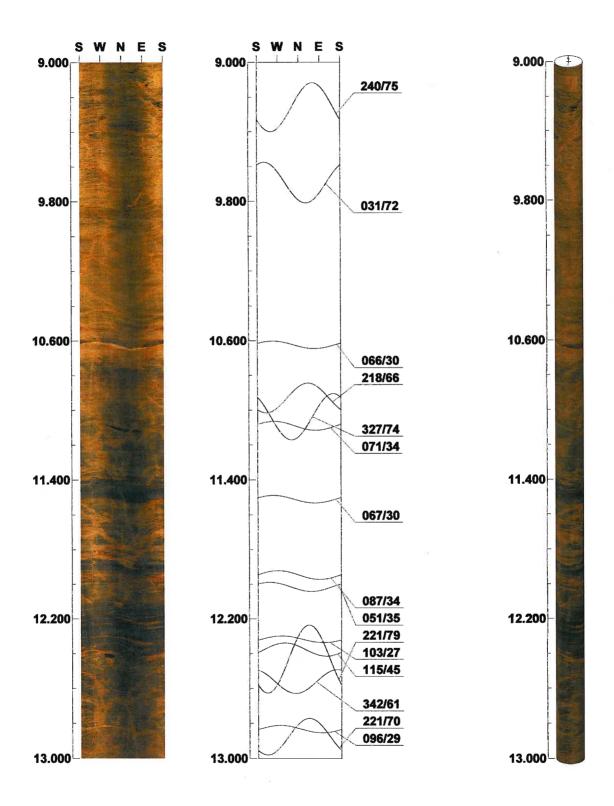
Inclination: -90

Depth range: 1.000 - 5.000 m



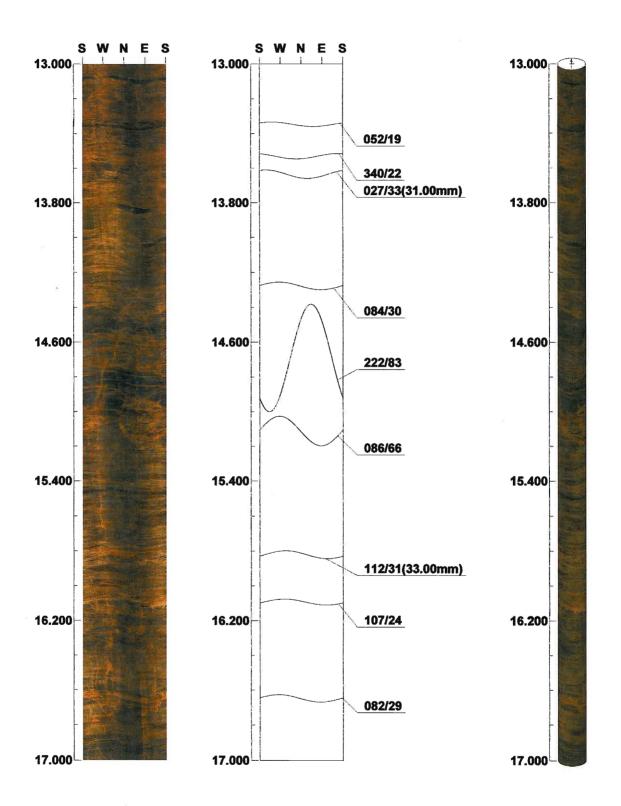

Scale: 1/20

Aspect ratio: 200 %


Bore hole No.: C-33 Azimuth: 0 Inclination: -90

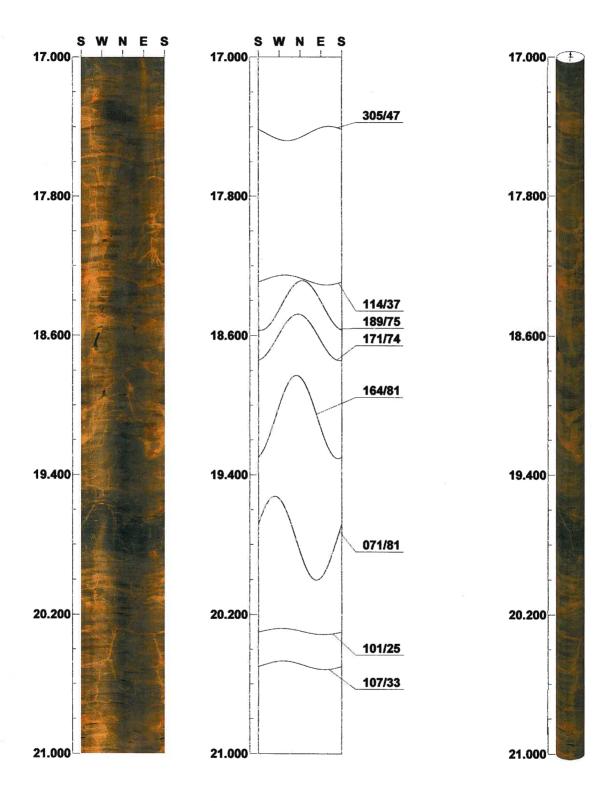
Depth range: 5.000 - 9.000 m




Bore hole No.: C-33 Azimuth: 0 Inclination: -90

Depth range: 9.000 - 13.000 m

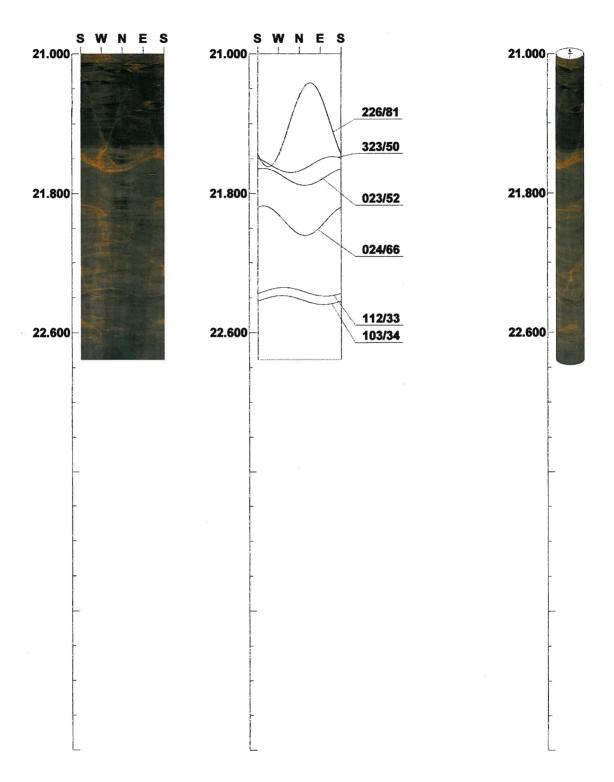



Bore hole No.: C-33 Azimuth: 0 Inclination: -90

Depth range: 13.000 - 17.000 m



Bore hole No.: C-33 Azimuth: 0 Inclination: -90


Depth range: 17.000 - 21.000 m



Bore hole No.: C-33 Azimuth: 0

Depth range: 21.000 - 22.754 m

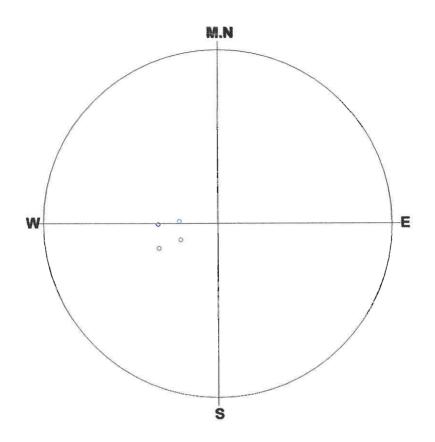
Inclination: -90



File name: C-33.STR

[]

| No.      | Depth<br>(m)     | Dir/Dip          | Sort                 | Aperture (mm) | Form             | Condition       | Rem          |
|----------|------------------|------------------|----------------------|---------------|------------------|-----------------|--------------|
| 1        | 1.932            | 066/19           | Foliation            | 0.0           | Planar           | Smooth          | Tight        |
| 2        | 2.230            | 101/46           | Parting              | 0.3           | Planar           | Smooth          | Open         |
| 3        | 2.573            | 089/28           | Foliation            | 0.0           | Planar           | Smooth          | Tight        |
| 4        | 2.867            | 073/25           | Parting              | 0.3           | Planar           | Smooth          | Open         |
| 5        | 3.106            | 168/76           | Joint                | 0.3           | Planar           | Rough           | Tight        |
| 6        | 3.296            | 121/45           | ShearZone            | 28.0          | Planar           | Brec/crus'd     | Open/loose   |
| 7        | 4.008            | 070/22           | ShearZone            | 45.0          | <b>Planar</b>    | Brec/crus'd     | Open/loose   |
| 8        | 4.334            | 109/23           | ShearZone            | 28,0          | Planar           | Brec/crus'd     | Open         |
| 9        | 4.395            | 150/28           | Vein                 | 17.0          | Planar           | Brec/crus'd     | Open/loose   |
| 10       | 4.907            | 073/37           | Parting              | 0.3           | Planar           | Sheared         | Open         |
| 11       | 5.225            | 095/75           | Joint                | 0.3           | Undulating       | Rough           | Open         |
| 12       | 5.373            | 073/40           | Parting              | 0.3           | Planar           | Smooth          | Open         |
| 13       | 5.571            | 014/66           | Joint                | 0.3           | Planar           | Smooth          | Tight        |
| 14       | 6.067            | 031/61           | ShearZone            | 9.0           | Planar           | Brec/crus'd     | Open/fil'd   |
| 15       | 6.111            | 266/65           | Joint                | 0.3           | Planar           | Rough           | Tight        |
| 16       | 6.565            | 281/77           | Joint                | 0.3           | Planar           | Rough           | Tight        |
| 17       | 6.806            | 075/33           | ShearZone            | 12.0          | Planar           | Brec/crus'd     | Open         |
| 18       | 7.148            | 264/58           | Joint                | 0.3           | Planar           | Smooth          | Tight        |
| 19       | 7.529            | 093/18           | Foliation            | 0.0           | Planar           | Smooth          | Tight        |
| 20       | 7.541            | 238/70           | Joint                | 0.3           | Planar           | Smooth          | Tight        |
| 21       | 7.585            | 097/24           | Parting              | 0.5           | Planar           | Smooth          | Open         |
| 22       | 8.358            | 090/23           | Parting              | 0.3           | Planar           | Smooth          | Open         |
| 23       | 9.259            | 249/75           | Joint                | 0.3           | Planar           | Rough           | Open         |
| 24       | 9.693            | 031/72           | Joint                | 2.0           | Planar           | Rough           | Open         |
| 25       | 10.624           | 066/30           | Parting              | 3.0           | Planar           | Smooth          | Open/fil'd   |
| 26       | 10.930           | 218/66           | Joint                | 0.3           | Planar           | Rough           | Tight        |
| 27       | 11.038           | 327/74           | Joint                | 0.5           | Planar           | Rough           | Tight        |
| 28       | 11.090           | 071/34           | ShearZone            | 7.0           | Planar           | Brec/crus'd     | Open         |
| 29       | 11.511           | 067/30           | Foliation            | 0.0           | Planar           | Smooth          | Tight        |
| 30       | 11.946           | 087/34           | Parting              | 0.3           | Planar           | Smooth          | Open         |
| 31       | 12.015           | 051/35           | Parting              | 0.3           | Planar           | Smooth          | Open         |
| 32       | 12.015           | 103 <i>/2</i> 7  | Parting              | 0.3           | Planar           | Smooth          | Open         |
| 33       | 12.376           | 115/45           | Parting              | 0.3           | Planar           | Smooth          | Open         |
| 34       | 12.431           | 221/79           | Joint                | 0.3           | Planar           |                 | •            |
| 35       | 12.451           | 342/61           |                      | 0.3           | Planar           | Rough<br>Smooth | Tight        |
| 36       |                  |                  | Joint                | 0.5<br>0.5    | Planar           | Smooth          | Open<br>Open |
| 30<br>37 | 12.833<br>12.876 | 096/29<br>221/70 | Parting<br>Joint     | 0.3           | Planar           | Smooth          | Tight        |
| 38       |                  | 052/19           | ShearZone            | 32.0          | Planar           | Brec/crus'd     | Open/loos    |
| 39       | 13.347<br>13.532 | 340/22           | Snearzone<br>Joint   | 32.0<br>0.5   | Planar<br>Planar | Smooth          |              |
| 39<br>40 |                  |                  |                      |               | Planar<br>Planar |                 | Open         |
|          | 13.635           | 027/33           | ShearZone<br>Basting | 31.0          |                  | Brecicrus'd     | Open         |
| 41<br>42 | 14.276<br>14.690 | 084/30<br>222/83 | Parting<br>Joint     | 0.3<br>0.3    | Planar<br>Planar | Smooth          | Tight        |
|          |                  |                  |                      |               |                  | Rough           | Tight        |
| 43<br>44 | 15.111           | 086/66           | Joint<br>ShearZone   | 0.3           | Planar           | Rough           | Open         |
|          | 15.820           | 112/31           |                      | 33.0          | Planar           | Brec/crus'd     | Open         |
| 45       | 16.092           | 107/24           | ShearZone            | 12.0          | Planar           | Brec/crus'd     | Open         |
| 46       | 16.647           | 082/29           | Parting              | 2.0           | Planar           | Smooth          | Open         |
| 47       | 17.438           | 305/47           | Joint                | 0.3           | Planar           | Smooth          | Tight        |
| 48       | 18.282           | 114/37           | Parting              | 2.0           | Planar           | Smooth          | Open         |
| 49       | 18.428           | 189/75           | Joint                | 0.3           | Planar           | Rough           | Tight        |
| 50       | 18.610           | 171/74           | Joint                | 0.3           | Planar           | Rough           | Tight        |


Tab. Table of Discontinuity (2/2)

File name: C-33.STR

1

| No. | Depth<br>(m) | Dir/Dip | Sort      | Aperture<br>(mm) | Form   | Condition   | Remark |
|-----|--------------|---------|-----------|------------------|--------|-------------|--------|
| 51  | 19.067       | 164/81  | Joint     | 0.3              | Planar | Rough       | Tight  |
| 52  | 19.762       | 071/81  | Joint     | 0.3              | Planar | Rough       | Tight  |
| 53  | 20.297       | 101/25  | ShearZone | 14.0             | Planar | Brec/crus'd | Open   |
| 54  | 20.492       | 107/33  | Parting   | 0.3              | Planar | Smooth      | Open   |
| 55  | 21.407       | 226/81  | Joint     | 0.3              | Planar | Rough       | Tight  |
| 56  | 21.635       | 323/50  | Joint     | 5.0              | Planar | Smooth      | Open   |
| 57  | 21.705       | 023/52  | Joint     | 0.5              | Planar | Smooth      | Open   |
| 58  | 21.957       | 024/66  | Joint     | 0.5              | Planar | Rough       | Tight  |
| 59  | 22.367       | 112/33  | Parting   | 0.5              | Planar | Smooth      | Open   |
| 60  | 22.414       | 103/34  | Parting   | 0.3              | Planar | Smooth      | Open   |

# C-33.STR <<FOLIATION>>



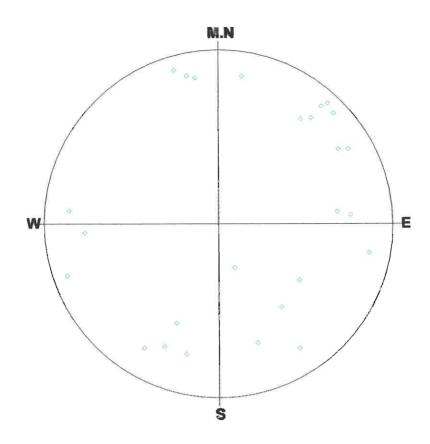
Number of Data: 4/60

# <Legend>

:Foliation - 4

+:Mineralban- 0

:Parting -- 0


\_\_\_:Fault -- 0

**▽:ShearZone- 0** 

 $\times$ :Vein -- 0

#### Schmidt (L.H)

# C-33.STR <<JOINT>>



Number of Data: 26/60

# <Legend>

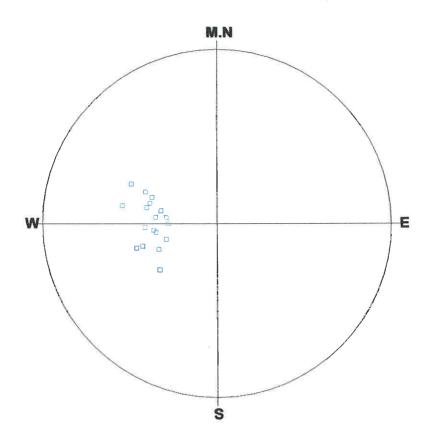
○:Foliation - 0 +:Mineralban- 0

:Joint -- 26

:Parting -- 0

∴:Fault -- 0

**▽:ShearZone-** 0


 $\times$ :Vein -- 0

# Schmidt (L.H)

Depth: 1.932 - 22.414 m

Aperture: 0.0 - 45.0 mm

# C-33.STR <<PARTING>>



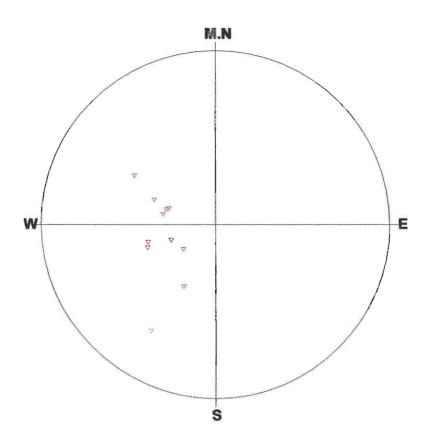
Number of Data: 18/60

#### <Legend>

:Foliation -- 0 +:Mineralban- 0

:Joint -- 0

Parting -- 18


 $\triangle$ :Fault - 0

**▽:ShearZone- 0** 

imes:Vein -- 0

## Schmidt (L.H)

# C-33.STR <<SHEAR ZONE>>

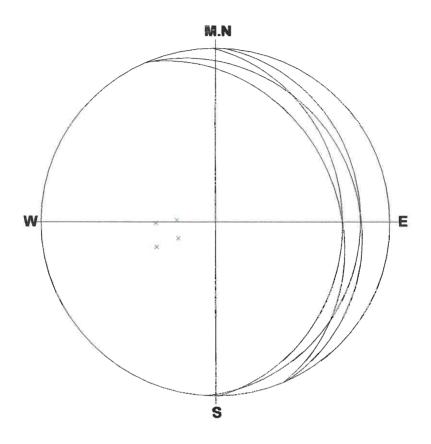


Number of Data: 11/60

## <Legend>

:Foliation - 0 +:Mineralban- 0

:Joint -- 0


:Parting -- 0

∴:Fault -- 0
∵:ShearZone- 11

×:Vein -- 0

## Schmidt (L.H)

# C-33.STR <<FOLIATION>>

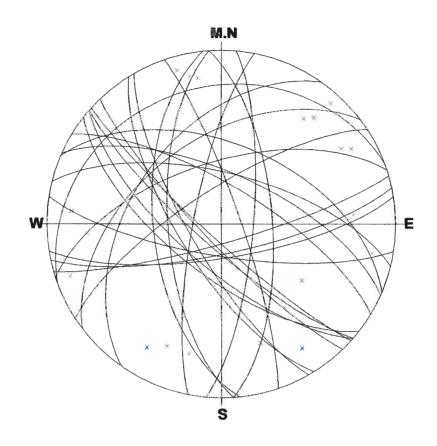


#### Number of Data:4/60

1:066/19(1)

2:089/28(3)

3:093/18(19)

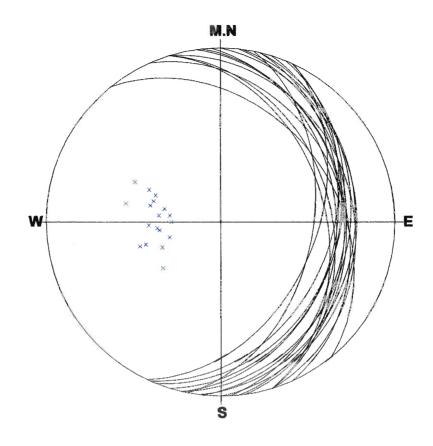

4:067/30(29)

# Schmidt (L.H)

Depth: 1.932 - 22.414 m

Aperture: 0.0 - 45.0 mm

# C-33.STR <<JOINT>>

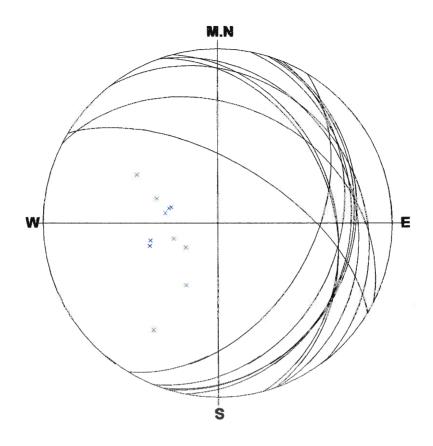



#### Number of Data:26/60

1:168/76(5) 6:264/58(18) 2:095/75(11) 7:238/70(20) 3:014/66(13) 8:240/75(23) 4:266/65(15) 9:031/72(24) 5:281/77(16) 10:218/66(26)

## Schmidt (L.H) M

# C-33.STR <<PARTING>>



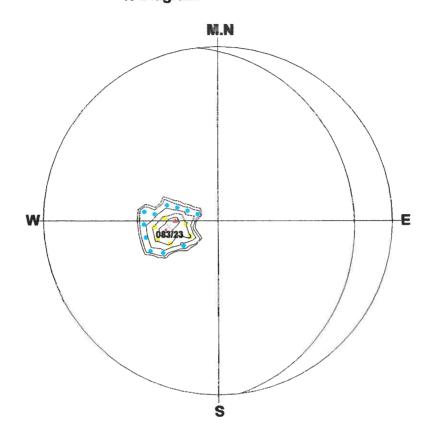

#### Number of Data:18/60

1:101/46(2) 6:090/23(22)
2:073/25(4) 7:066/30(25)
3:073/37(10) 8:087/34(30)
4:073/40(12) 9:051/35(31)
5:097/24(21) 10:103/27(32)

## Schmidt (L.H)

# C-33.STR <<SHEAR ZONE>>




#### Number of Data:11/60

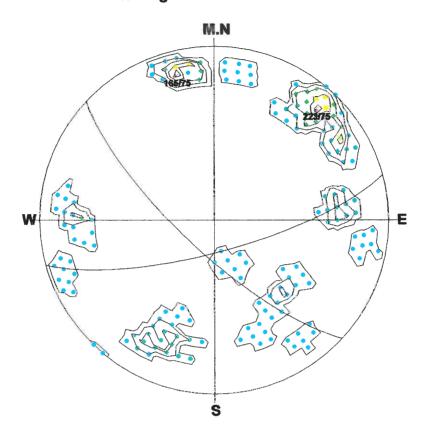
1:121/45(6) 6:071/34(28)
2:070/22(7) 7:052/19(38)
3:109/23(8) 8:027/33(40)
4:031/61(14) 9:112/31(44)
5:075/33(17) 10:107/24(45)

## Schmidt (L.H)

C-33.STR <<FOLIATION>>

\*\*\*\*\* % Diagram \*\*\*\*\*\*




#### Number of Data: 4

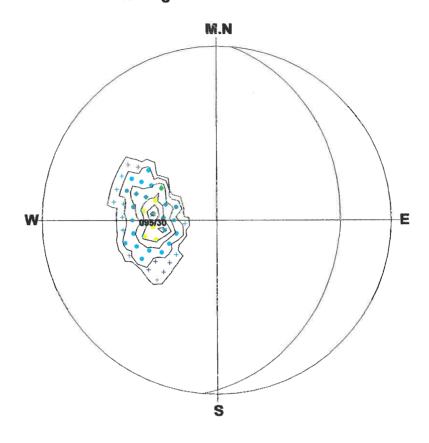
| <legend> Sym. (%)</legend> | Contour Value (%) |  |  |  |  |  |
|----------------------------|-------------------|--|--|--|--|--|
| <b>_: 75</b>               | Contour 1: 0      |  |  |  |  |  |
| <b>V</b> : 60 - 75         | Contour 2: 15     |  |  |  |  |  |
| V. 60 - 75                 | Contour 3: 30     |  |  |  |  |  |
| : 45 - 60                  | Contour 4: 45     |  |  |  |  |  |
| A. 20 45                   | Contour 5: 60     |  |  |  |  |  |
| <b>•</b> : 30 - 45         | Contour 6: 75     |  |  |  |  |  |
| <b>)</b> : 15 - 30         |                   |  |  |  |  |  |
| +: 0 - 15                  |                   |  |  |  |  |  |

# Schmidt (L.H)

# C-33.STR <<JOINT>>

\*\*\*\*\* % Diagram \*\*\*\*\*\*




#### Number of Data: 26

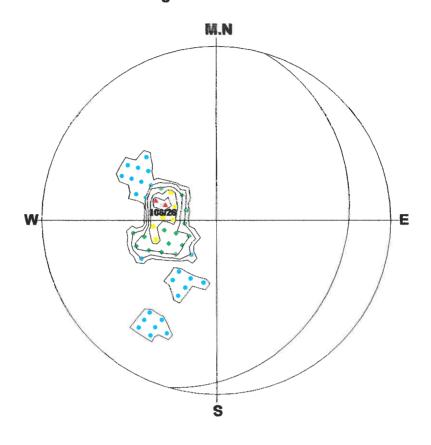
| <legend> Sym. (%)</legend> | Contour Value (%) |
|----------------------------|-------------------|
| <b>▲</b> : 15              | Contour 1: 0      |
| <b>V</b> : 12 - 15         | Contour 2: 3      |
| V: 12 - 15                 | Contour 3: 6      |
| : 9 - 12                   | Contour 4: 9      |
| <b>A</b> . 6. 0            | Contour 5 : 12    |
| <b>•</b> : 6 - 9           | Contour 6: 15     |
| <b>:</b> 3 - 6             |                   |
| +: 0 - 3                   |                   |

# Schmidt (L.H)

C-33.STR <<PARTING>>

\*\*\*\*\* % Diagram \*\*\*\*\*\*



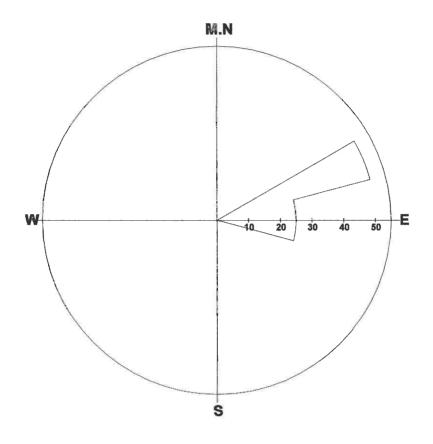

Number of Data: 18

| <legend> Sym. (%)</legend> | Contour Value (%) |  |  |  |  |  |
|----------------------------|-------------------|--|--|--|--|--|
| <b>▲:</b> 55               | Contour 1: 0      |  |  |  |  |  |
|                            | Contour 2: 11     |  |  |  |  |  |
| <b>V</b> : 44 - 55         | Contour 3: 22     |  |  |  |  |  |
| : 33 - 44                  | Contour 4: 33     |  |  |  |  |  |
| <b>A</b>                   | Contour 5: 44     |  |  |  |  |  |
| <b>•</b> : 22 - 33         | Contour 6: 55     |  |  |  |  |  |
| <b>)</b> : 11 - 22         |                   |  |  |  |  |  |
| +: 0 - 11                  |                   |  |  |  |  |  |

# Schmidt (L.H)

# C-33.STR <<SHEAR ZONE>>

\*\*\*\*\* % Diagram \*\*\*\*\*\*



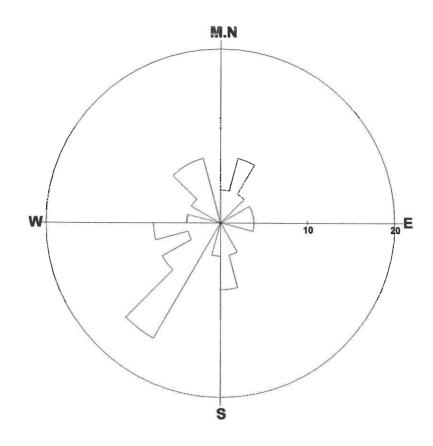

#### Number of Data: 11

# <Legend> Sym. (%) ∴ 36 ∵ 29 - 36 ∴ 21 - 29 ∴ 14 - 21 ∴ 7 - 14 ∴ 7 - 14 ∴ 0 - 7 Contour Value (%) Contour 1 : 0 Contour 2 : 7 Contour 3 : 14 Contour 4 : 21 Contour 5 : 29 Contour 6 : 36

## Schmidt (L.H)

C-33.STR <<FOLIATION>>




Number of Data: 4/60

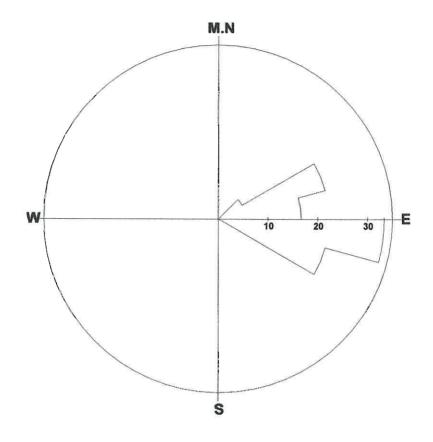
Max: 50.0%

**Grouping Angle: 15 deg** 

| Dir  | %  | Dir  | % | Dir         | % |
|------|----|------|---|-------------|---|
| 0-   | 0  | 135- | 0 | 270-        | 0 |
| 15-  | 0  | 150- | 0 | 285-        | 0 |
| 30-  | 0  | 165- | 0 | 300-        | 0 |
| 45-  | 0  | 180- | 0 | 315-        | 0 |
| 60-  | 50 | 195- | 0 | 330-        | 0 |
| 75-  | 25 | 210- | 0 | 345-        | 0 |
| 90-  | 25 | 225- | 0 | And Andreas |   |
| 105- | 0  | 240- | 0 |             |   |
| 120- | 0  | 255- | 0 |             |   |

# C-33.STR <<JOINT>>




Number of Data: 26/60

Max: 15.4%

**Grouping Angle: 15 deg** 

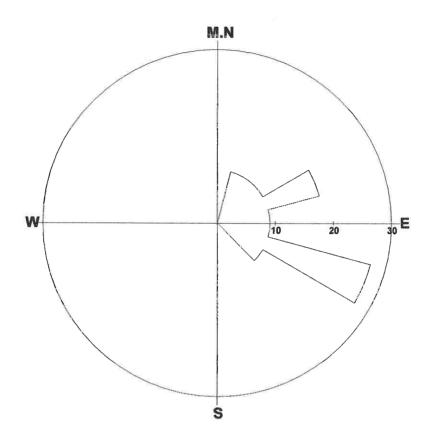
| Dir  | % | Dir  | %  | Dir                                     | % |
|------|---|------|----|-----------------------------------------|---|
| 0-   | 4 | 135- | 0  | 270-                                    | 4 |
| 15-  | 8 | 150- | 4  | 285-                                    | 0 |
| 30-  | 4 | 165- | 8  | 300-                                    | 4 |
| 45-  | 0 | 180- | 4  | 315-                                    | 8 |
| 60-  | 4 | 195- | 0  | 330-                                    | 8 |
| 75-  | 4 | 210- | 15 | 345-                                    | 0 |
| 90-  | 4 | 225- | 8  |                                         |   |
| 105- | 0 | 240- | 4  | William Jan - Gill (Managar             |   |
| 120- | 0 | 255- | 8  | San |   |

C-33.STR <<PARTING>>



Number of Data: 18/60

Max: 33.3%


**Grouping Angle: 15 deg** 

| Dir  | %  | Dir  | % | Dir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | % |
|------|----|------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 0-   | 0  | 135- | 0 | 270-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 |
| 15-  | 0  | 150- | 0 | 285-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 |
| 30-  | 0  | 165- | 0 | 300-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 |
| 45-  | 6  | 180- | 0 | 315-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 |
| 60-  | 22 | 195- | 0 | 330-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 |
| 75-  | 17 | 210- | 0 | 345-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 |
| 90-  | 33 | 225- | 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 105- | 22 | 240- | 0 | and the second s |   |
| 120- | 0  | 255- | 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |

Depth: 1.932 - 22.414 m

Aperture : 0.0 - 45.0 mm

C-33.STR <<SHEAR ZONE>>



Number of Data: 11/60

Max: 27.3%

**Grouping Angle: 15 deg** 

| Dir  | %  | Dir  | % | Dir  | % |
|------|----|------|---|------|---|
| 0-   | 0  | 135- | 0 | 270- | 0 |
| 15-  | 9  | 150- | 0 | 285- | 0 |
| 30-  | 9  | 165- | 0 | 300- | 0 |
| 45-  | 9  | 180- | 0 | 315- | 0 |
| 60-  | 18 | 195- | 0 | 330- | 0 |
| 75-  | 9  | 210- | 0 | 345- | 0 |
| 90-  | 9  | 225- | 0 |      |   |
| 105- | 27 | 240- | 0 |      |   |
| 120- | 9  | 255- | 0 |      |   |

Title: C-33.STR Comment: JOINT Depth: 1.932 - 22.414 m Aperture: 0.0 - 45.0 mm

Sort: 1/7
Form: 5/5
Condition: 11/11
Remark: 9/9

2011/ 8/ 31

Elevation: 0.000m Water Level: 21.050m

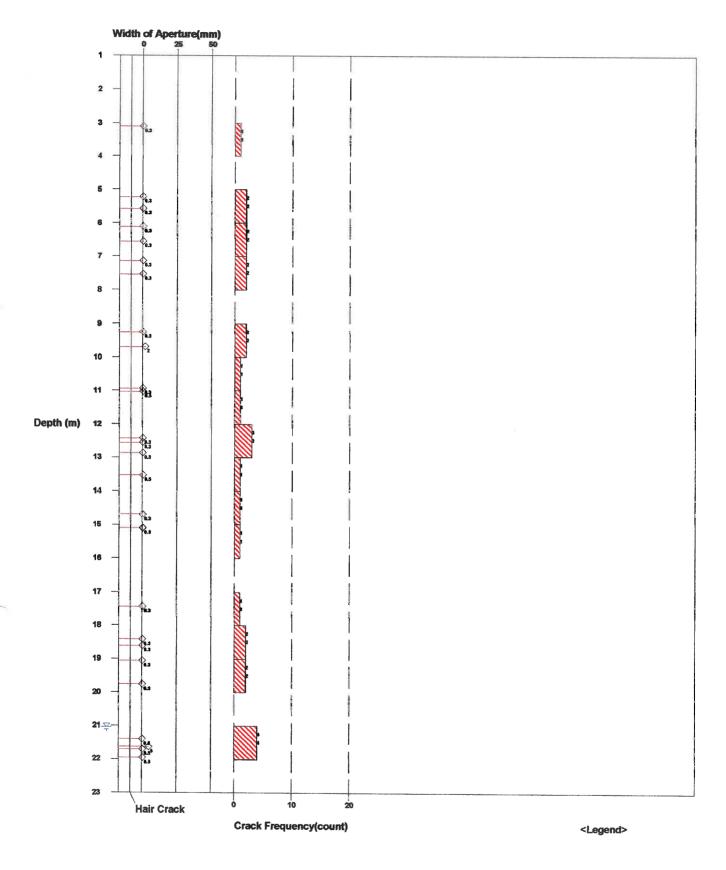



Fig. Rock Mass Condition Graph

All Crack Frequency
Open Crack Frequency

**₩** Water Level

Title: C-33.STR Comment: PARTING Depth: 1.932 - 22.414 m Aperture: 0.0 - 45.0 mm Sort: 1/7
Form: 5/5
Condition: 11/11
Remark: 9/9

2011/ 8/ 31

Elevation: 0.000m Water Level: 21.050m

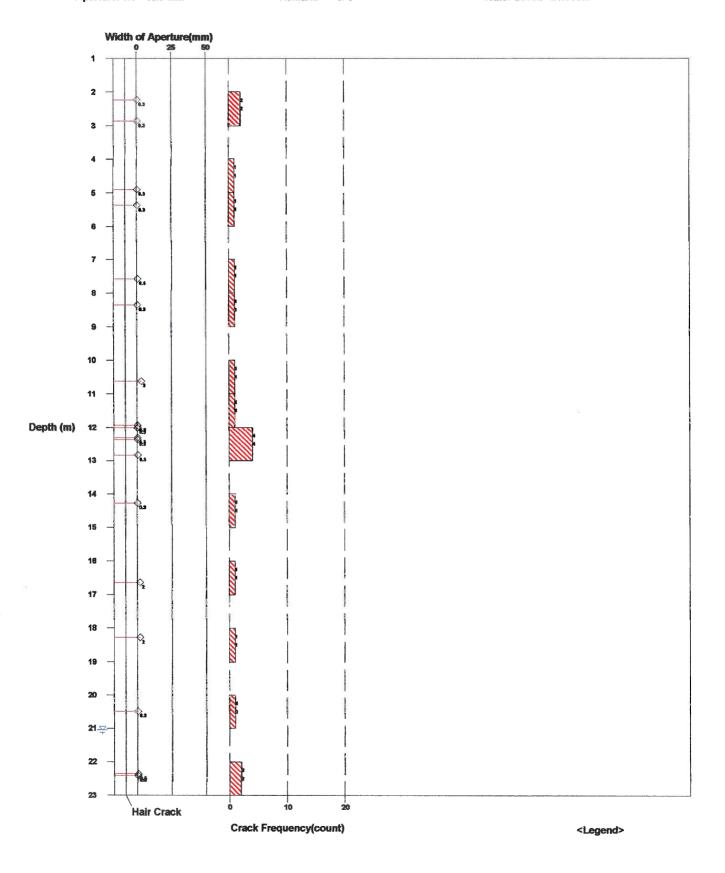



Fig. Rock Mass Condition Graph

All Crack Frequency
Open Crack Frequency

₩ Water Level

Title: C-33.STR Comment: SHEAR ZONE Depth: 1.932 - 22.414 m Aperture: 0.0 - 45.0 mm Sort: 1/7 Form: 5/5 Condition: 11/11 Remark: 9/9 2011/ 8/31

Elevation: 0.000m Water Level: 21.050m

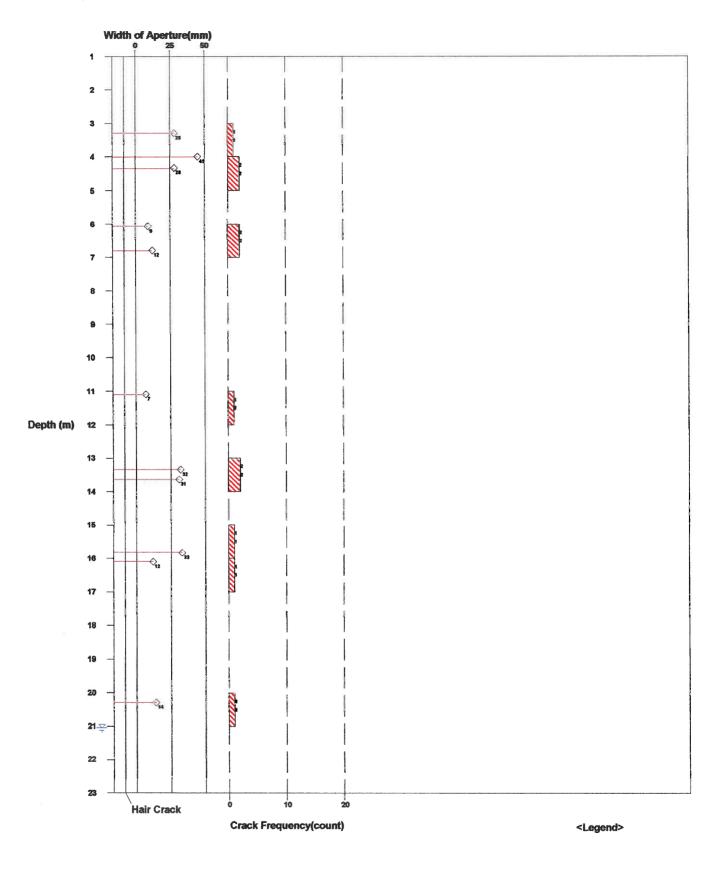
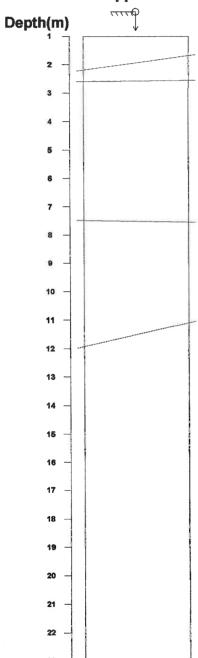



Fig. Rock Mass Condition Graph

All Crack Frequency
Open Crack Frequency

**₩** Water Level

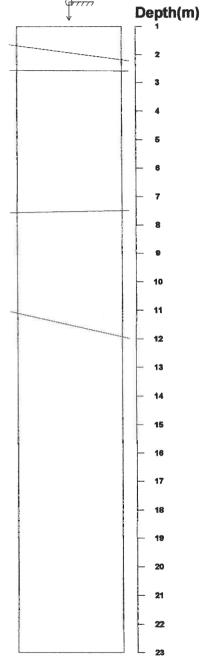

Title: C-33.STR

**Comment: FOLIATION** Depth: 1.932 - 22.414 m Aperture: 0.0 - 45.0 mm Sort: Form: 1/7 5/5

Condition: 11/11

Remark: 9/9

**View Point 2 Profile of Apparent Borehole** 




Up(+) (+)qU Down(-) Down(-)

**View Point2View Point1** 

**Profile of Apparent Borehole** 

**View Point 1** 



Direction: 0 deg

Inclination: Vertical(Down)

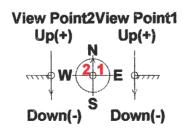
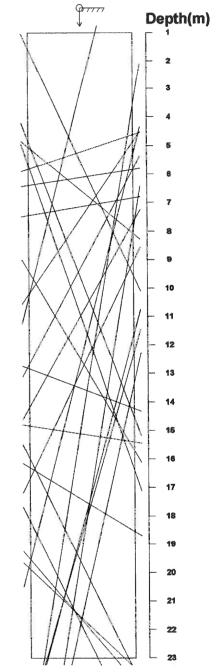

<Legend> Entrance @7777 G.L. <sup>↓</sup> Bottom

Fig. **Apparent Dip** 

Title: C-33.STR **Comment: JOINT** Depth: 1.932 - 22.414 m

Aperture: 0.0 - 45.0 mm

**View Point 2 Profile of Apparent Borehole** 




Sort: Form: 1/7 5/5

Condition: 11/11 Remark:

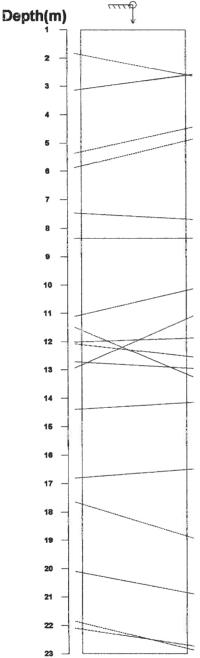
9/9

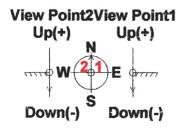
**View Point 1 Profile of Apparent Borehole** 



Direction: 0 deg

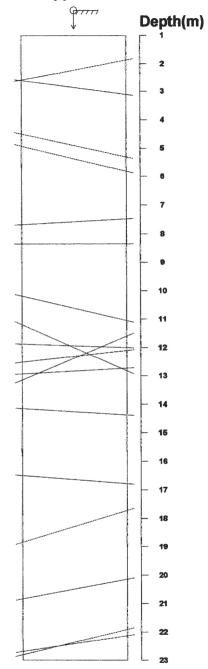
Inclination: Vertical(Down)


<Legend> Entrance @ G.L **Bottom** 


**Apparent Dip** Fig.

Title: C-33.STR **Comment: PARTING** Depth: 1.932 - 22.414 m

Aperture: 0.0 - 45.0 mm


## **View Point 2 Profile of Apparent Borehole**





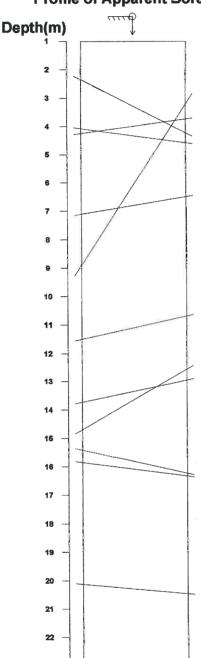
1/7 Sort: Form: 5/5 Condition: 11/11 Remark: 9/9

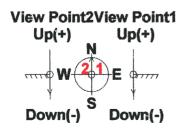
#### **View Point 1 Profile of Apparent Borehole**



Direction: 0 deg

Inclination: Vertical(Down)


<Legend> Entrance @ G.L **↓** Bottom

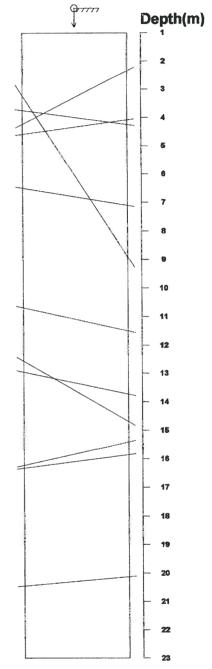

Fig. **Apparent Dip** 

Title: C-33.STR

**Comment: SHEAR ZONE** Depth: 1.932 - 22.414 m Aperture: 0.0 - 45.0 mm

> **View Point 2 Profile of Apparent Borehole**






Sort: Form:

1/7 5/5 Condition: 11/11

Remark: 9/9

> **View Point 1 Profile of Apparent Borehole**



Direction: 0 deg

Inclination: Vertical(Down)

<Legend> Entrance @ G.L. **♦** Bottom

**Apparent Dip** Fig.