COPYRIGHT NOTICE

This geotechnical log and its associated data (the Document) is licensed by the Queensland Department of Transport and Main Roads under the <u>Creative Commons Attribution 4.0 Licence</u> (CC BY 4.0). When reusing the Document, in whole or in part, please attribute the Department and author as follows: "(c) State of Queensland (Department of Transport and Main Roads) 2020, licensed under the CC BY 4.0 Licence, prepared by WSP". This licence does not apply to logos or trademarks.

LIMITATION OF LIABILITY

The CC BY 4.0 Licence contains a comprehensive Disclaimer of Warranties and Limitation of Liability. In addition, please note that this Document was prepared for Departmental use only. Reuse of the Document by anyone for any other purpose could result in error and/or loss. You should obtain professional advice before making decisions based on the contents of the Document.

When reproducing any part of this Document, you must also reproduce this limitation of liability notice in addition to the italicised attribution statement above.

Retrieved from the Queensland Geotechnical Database http://qgd.org.au/

This log has been contributed to the Queensland Geotechnical Database with the permission of WSP.

BOREHOLE ENGINEERING LOG

BOREHOLE NO.

SHEET 1 OF 3

100 YEARS

Client:

Project:

Department of Transport and Main Roads

Gold Coast Rapid Transit

Proposed University Hospital Station cutting, Ch: 19443.6

Date Commenced: Date Completed:

9/2/10 10/2/10

Borehole Location: Project Number:

2161016A

Recorded By: Log Checked By:

NG My

Drill Model/Mounting: Drillpower Hydrapower Scout

Hole Angle:

Surface RL:

24.89 m AHD*

	B	orek	nole Infor	mation		ı		Field Material De	esc	ription		
1	2	3	4	5	6	7	8	9	10	11	12	13
ME I HOD	SUPPORT		RL(m) AHD*	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	RELATIVE DENSITY / CONSISTENCY	HAND PENETROMETER (kPa)	STRUCTURE AND ADDITIONA OBSERVATIONS
VB	M	o Senara	- - -24 1 - - - - -23 2	- SPT - 9,30 //130mm	SPT			META-SILTSTONE: pale yellow mottled red and orange, extremely weathered, extremely low strength	D		-	WEATHERED ROCK
			-22 -	-\/100mm				REFER TO CORED BOREHOLE LOG				
			- -21 4 - 4 - - - -20 5									
			- -19 6 - - - - -18 7 -	-								
			- -17 8 - 8 - - - -16 9 -	-								
			- -15	-								
			10									

Borehole Location:

CORED BOREHOLE ENGINEERING LOG

BOREHOLE NO.

UBH04

SHEET 2 OF 3

9/2/10

NG

10/2/10

Client: Project: Department of Transport and Main Roads

Gold Coast Rapid Transit

2161016A

Proposed University Hospital Station cutting, Ch: 19443.6

2mol

Date Commenced:

Date Completed:

Recorded By:

Project Number: Log Checked By: Drill Model/Mounting: **Drillpower Hydrapower Scout** Hole Angle: 90° Surface RL: 24.89 m AHD* E 81452.85 N 62141.34 GCCC Grid* Borehole Diameter: 75 mm Bearing: Co-ords:

nole Diameter: 75 mm	Bearing:	Co-ords: E 81452.85 N 62141.34 GCCC G
orehole Information		rial Description
	SOIL/ROCK MATERIAL FIELD DESCRIPTION	10 11 12 FERRED AVERAGE RENOTH IS(50) SPACING MPa STRUCTURE AND ADDITIONAL OBSERVATIONS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-24 1- -24 1- -3 - -3 2- -4 1- -4 1-		
9 9 - 35021 400 4	META-SILTSTONE: white to pale grey, chlorite alteration.	3.2 m: foliation 60°
-20 5- -19	CORE LOSS	
600 6	META-SILTSTONE: white to pale grey. XW change of colour to pale red	6.0 m - 6.45 m: SPT 8, 16, 29
Q P -18 6.80	6.8 m - 6.85 m quartz vein HW	6.9 m: foliation angle 30°
-17 8-	META-SILTSTONE: white to pale grey.	7.5 m - 7.95 m: SPT 9, 21, 30/105
00 - 16 885		
88 0 1 -15 15		
	9	9

CORED BOREHOLE ENGINEERING LOG

BOREHOLE NO.

UBH04

10/2/10

mge

NG

Date Completed:

Log Checked By:

Recorded By:

SHEET 3 OF 3 Date Commenced: 9/2/10

Client: Department of Transport and Main Roads **Gold Coast Rapid Transit**

Project: Borehole Location: Proposed University Hospital Station cutting, Ch: 19443.6

Drillpower Hydrapower Scout

2161016A

Project Number:

Hole Angle: Surface RL: 24.89 m AHD*

Drill Model/Mounting:

Borehole Diameter: 75 mm Bearing:							75 mm	1	Bearing:	Co-	Co-ords: E 81452.85 N 62141.34 GCCC Grid			
Borehole Information						mat					/laterial De			
H	1	2	3	4	5		6	7	8	9	10	11	12	
COLETA	MEINOU	SUPPORT	WATER	CORE RECOVERY	RQD	RL(m) AHD*	DEPTH(m)	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION	WEATHERING	MP 3 VH 3 V	AVERAGE DEFECT SPACING mm 0000 000000000000000000000000000000	STRUCTURE AND ADDITIONAL OBSERVATIONS	
CIPRIN	MINIC			98	13	-	-		META-SILTSTONE: white to pale grey. (continued)	XW			10.2 m: foliation angle 75°	
						-14 -	11 <i>-</i>						10.9 m; foliation angle 75°	
				94	37	- - - -13	11.28		META-SANDSTONE: fine to medium grained, pale orange iron staining.					
9/10				06	50	-	12.00[2-		META-SILTSTONE: pale green-grey, extremely weathered, extremely low strength, chlorite alteration.					
2006.GDT 25/				0		–12 - -	13 -		META-SANDSTONE: fine to medium grained, pale grey to pale yellow with minor pale orange staining.	HW				
OTECH_24-2-				100	0	- - -11	13.60 - - 14 -		META-SILTSTONE: pale grey with orange and red staining.	xw				
OLES.GPJ GE				100	10	- - - -10	14.47		META-SANDSTONE: fine to medium grained, purple staining.	HW				
GCRT_BOREH				95	10	- - -	15.05 15.32 -		META-SILTSTONE: pale grey with minor purple staining. META-SANDSTONE: fine grained, purple staining.	xw				
OREHOLE LOG						- 9 - -	16 —		META-SILTSTONE: pale grey.					
ING CORED B				20	0	- - 8	17 17.10 17.15							
1 ENGINEER				64	0	- - -	17.15 -		17.1 purple staining17.15-17.25 quartz vein, iron stained, fragmented					
Pty Ltd. Version 5						- 7 - - -	- 18 - - -		pale grey END OF BOREHOLE AT 18.00 m				* Horizontal and vertical data determined by ground survey	
Parsons Brinckerhoff Australia Pty Ltd. Version 5.1 ENGINEERING CORED BOREHOLE LOG GCRT_BOREHOLES.GPJ GEOTECH_24-2-2006.GDT 25/5/10						- 6 - -	- 19 – - - -							
Parson						- 5	This b	orehole	e log should be read in conjunction with Parso	ons B	rinckerhoff's	accompanyir	ng standard notes.	

REPORT OF PHOTOGRAPHS

Borehole number:

UBH04

of

Department of Client: Transport and

Main Roads

Coordinates:

E 81452.85 N 62141.34

Depth range:

3.0 m - 18.0 m

Project:

Gold Coast Rapid Transit

Surface RL:

24.89 m

Inclined length:

ength: -

Sheet

_

Borehole location:

Ch: 19485

Hole angle:

90°

Drill model/mounting:

Hydrapower Scout

Project number:

2161016A

Bearing:

-

Borehole diameter:

75 mm

