COPYRIGHT NOTICE

This geotechnical log and its associated data (the Document) is licensed by the Queensland Department of Transport and Main Roads under the <u>Creative Commons Attribution 4.0 Licence</u> (CC BY 4.0). When reusing the Document, in whole or in part, please attribute the Department as follows: "(c) State of Queensland (Department of Transport and Main Roads) 2020, licensed under the CC BY 4.0 Licence". This licence does not apply to the Queensland Government logo or trademarks.

LIMITATION OF LIABILITY

The CC BY 4.0 Licence contains a comprehensive Disclaimer of Warranties and Limitation of Liability. In addition, please note that this Document was prepared for Departmental use only. Reuse of the Document by anyone for any other purpose could result in error and/or loss. You should obtain professional advice before making decisions based on the contents of the Document.

When reproducing any part of this Document, you must also reproduce this limitation of liability notice in addition to the italicised attribution statement above.

Retrieved from the Queensland Geotechnical Database http://qgd.org.au/

REMARKS_

ENGINEERING BOREHOLE LOG

BOREHOLE No	<u>_BH121_</u> _
SHEET	<u>1</u> of <u>4</u>
REFERENCE No	<u>H10916</u>

LOGGED BY CM / SG

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/6-2010

PR	OJECT	_lpsw	<u>ich Moto</u>	otorway Upgrade - Rocklea to Darra											
LO	CATION	<u>_Cnr</u>	<u>Archerfie</u>	el <u>d</u> R	Rd & Ipswich Rd service road (Darra Motel)			CC	ORDINATES	<u>2 N</u>					
PROJECT No_FG5779			<u>779</u>		SURFACE R.L. <u>36.12m</u> PLUNGE <u>-90 °</u>		DATE STARTED	29/11	I/10_ GRID DATUM <u>GDA94</u>						
JO	3 No	<u> 140/</u>	<u>U16/902</u>	<u> </u>	HEIGHT DATUM <u>AHD</u> BEARING		DATE COMPLETED	29/11	I/10 DRILLER <u>Soil Surveys</u>						
o DEPTH (m)	R.L. (m) 36.12	CASING OTHER WASH BORING CORE DRILLING	RQD ()% CORE REC%	SAMPLE	MATERIAL DESCRIPTION	USC WEATHERING	INTACT DEFECT STRENGTH SPACING (mm) 표풍ェ도고 기교 있음이 200	GRAPHIC LOG	ADDITIONAL DATA AND TEST RESULTS	SAMPLES TESTS					
-	30.12	T			TOPSOIL			-	Non destructive digging up to 1.5m						
- - - - - - - - - - - - - - - - - - -	34.62								(Based on Drillers logs only)	-					
F				А	Silty CLAY (Residual) Mottled red-grey, moist, stiff to mainly very stiff.				4,7,8 N=15	SPT					
-2					High plasticity; iron staining throughout. Occasional fine grained sand in parts.				N=15						
d-In 14/02/2011 17:35				В					6,8,12 N=20	SPT					
Datgel CPT Tool gINt Ad				С		(CH)			8,11,16 N=27	SPT					
0 DARRA.GFJ < <drawingfile>> Datgel CPT Tool gN1 Add-In 14/02/2011 17:35</drawingfile>				D	Poppming grow below 5 5m donth				7,10,16 N=26	SPT					
	29.92			E	Becoming grey below 5.5m depth.				6,11,15 N=26	SPT					
FG5779 IPSWICH MWY_F				F	CLAYSTONE FINE GRAINED SEDIMENTARY ROCK COMPOSED MAINLY OF CLAY SIZED PARTICLES HW: Generally exhibits engineering properties of pale grey, moist, hard silty clay.				18,30/150mm N>50	SPT					
REHOLE LOG				G	Low to medium plasticity; minor traces of fine grained sand in parts.	HW			18,24,30 N>50	SPT					
NEERING BO	27.62			н					12,30/150mm N>50 30/60mm	SPT					
oLD_DMR_LIB_01.GLB_Log_A_ENGINEERING BOREHOLE LOG_FG5779.IPSWCH MWY_ROCKLEA. 				J	SILTSTONE FINE GRAINED SEDIMENTARY ROCK COMPOSED MAINLY OF SILT SIZED PARTICLES HW: Generally exhibits engineering properties of red-brown to yellow-brown, moist, hard sandy silt. Minor clay fraction throughout. (See over)	HW			30/60mm N>50 30/130mm N>50	SPT SPT					
	/1			L	· · · /	1	· · · · · · · · · · · · · · · · · · ·	1							

ENGINEERING BOREHOLE LOG

BOREHOLE No	<u>BH121</u>
SHEET	<u>2</u> of <u>4</u>
REFERENCE No	<u>H10916_</u> _

CM / SG

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/6-2010

PRC	JECT	_lps	<u>swi</u>	ch Moto	r <u>wa</u>	y Upgrade - Rocklea to Darra								
LOCATION Cnr Archerfield Rd & Ipswich Rd service road (Darra Motel) COORDINATES 495557.9 E; 6949963.2 N										2 <u>N</u>				
PROJECT No_FG5779 SURFACE R.L. <u>36.12m</u> PLUNGE <u>-90</u> ° DATE STARTED <u>29/11/10</u> GRID DATUM <u>GDA94</u>														
JOB No <u>140/U16/902</u> HEIGHT DATUM <u>AHD</u> BEARING <u>DATE COMPLETED 29/11/10</u> DRILLER <u>Soil Surveys</u>														
Ê	R.L. (m)	C 4	RILLING	RQD ()%		MATERIAL	UZ DZ	INTACT STRENGTH	DEFECT SPACING	FOG	ADDIT	IONAL D	ATA	
DEPTH (m)		AER HER		CORE	MPLE	DESCRIPTION	ATHERING	· ·	(mm)	APHIC LI	TEO	AND	TO	SAMPLES TESTS
10	26.12	CAS DEC	Š	REC %	SAN		USC	⋢⋧ェ౾⋾⋧ҵ		GR/	IESI	I RESUL	15	SAN
-	25.62					SILTSTONE HW (Cont'd) Iron concretions nodules in parts.	нw							-
					K	SANDSTONE FINE TO COARSE GRAINED, MASSIVE, POORLY CEMENTED SEDIMENTARY ROCK XW: Yellowish, moist very dense silty sand.							30/120mm N>50	SPT _ - - - -
					L	Sand fraction mainly fine to medium grained.							30/110mm N>50	SPT _

REMARKS_

ENGINEERING BOREHOLE LOG

BOREHOLE No	<u>BH121</u>
SHEET	<u>3</u> of <u>4</u>
REFERENCE No	<u>H10916</u>

LOGGED BY

CM / SG

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/6-2010

	PROJECT Ipswich Motorway Upgrade - Rocklea to Darra										
					SURFACE R.L. <u>36.12m</u> PLUNGE <u>-90</u> °						<u> </u>
					HEIGHT DATUM <u>AHD</u> BEARING						
(m)	R.L. (m)	ILLING	RQD ()%		MATERIAL		INTACT D	DEFECT		ADDITIONAL DATA	
DEPTH (m)		SING HER VSH BO	0005	SAMPLE	DESCRIPTION	THEF		008	GRAPHIC LOG	AND	SAMPLES TESTS
20	16.12	CAS OTH VAS COF	CORE REC %	SAM		USC	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	2000 2000 1111	GRA	TEST RESULTS	SAMPL TESTS
È					CLAYSTONE XW: (Cont'd)						-
-							I I I I I I I I I I I I I I I I I I I	· · · · ·			
Ē				U				· · · · ·		12,18,25 N=43	SPT
-21								· · · ·			-
-								· · · · ·			
Ē										13,20,27	-
Ē				V				· · · ·		N=47	SPT :
- 22						XW		· · · · ·			-
Ę											
35				w				· · · · ·		14,24,31	SPT
21 - 23								· · · ·		N>50	
4/02/20								· · · · ·			
dd-In 1										04/450	
gINt A				Х				· · · ·		31/150mm N>50	SPT]
01 - 24	12.12		(97)		SANDSTONE			· · · ·			-
< <cl> Cabina Wing Files> Datigel CPT Tool gills Add-In 14/02/2011 17:35 T T<</cl>			(97)		MW: Grey, massive with minor interlaminations, fine to coarse grained, mainly very low strength.					Is(50) = 0.07MPa Is(50) = 0.06MPa	x -
I I I										DD = 1.69t/m ³ ; WD = 2.04t/m ³ ; MC = 20.6%; UCS=1255KPa	-
252					Becoming coarse grained below 26.8m depth.			• • •			-
					Defects are almost nil.					Is(50) = 0.07MPa Is(50) = 0.11MPa	x · o ·
DARRA.GPJ					Defects are predominantly wide to very wide spaced, tight and clean.						- -
ATO D											
92 - 26											-
R			97	\geq							
ICH W			(0) 0	X							-
MSdI 27			(85)	\square		MW				Is(50) = 0.05MPa	x
- 1-										ls(50) = 0.05MPa	0 .
											-
HOLE								· · ·		ls(50) = 0.05MPa	x .
8 8 8 28 28										ls(50) = 0.04MPa	0 -
											-
											-
3 A_E											
1 - 29 8 - 1 - 29										ls(50) = 0.02MPa	0
IB_01.(87	X							-
01D DMR_LIB_01.0LB_Log_A_ENGINEERING BOREHOLE LOG_FG6779 IPSWCH MWY_ROCKLEATO			(60)	\square				· · · · ·			
010 - 30				\square	(See over)						

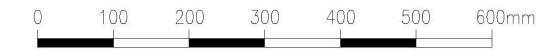
REMARKS.

ENGINEERING BOREHOLE LOG

BOREHOLE No	<u>BH121</u>
SHEET	4 of4
REFERENCE No	<u>H10916</u>

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/6-2010

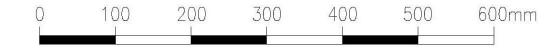
					d & Ipswich Rd service road (Darra Motel)					DINATES 495557.9 E; 6949963	
					SURFACE R.L. <u>36.12m</u> PLUNGE <u>-90 °</u>						
OB N	١o	<u> 140/ </u>	<u>U16/902</u>		HEIGHT DATUM <u>AHD</u> BEARING		DATE COMP	LETED _	<u>29/11/10</u>	DRILLER Soil Surveys	
DEPTH (m)	R.L. (m)	ING Her Sh Boring Re Drilling	RQD ()%	SAMPLE	MATERIAL DESCRIPTION	ATHERING		DEFECT SPACING (mm)	GRAPHIC LOG	ADDITIONAL DATA AND	SAMPLES
30	6.12	CAS VAN	CORE REC %	SAN		USC	3 ॼड़⊤ॾ⊐ड़ॼ		GRJ	TEST RESULTS	SAN
				\mathbb{N}	SANDSTONE MW (cont'd)	MW					
31	5.72				CLAYSTONE MW: Grey to yellow-brown, minor iron stained, massive, mainly very low to low strength.			· · · · · · · · · · · · · · · · · · ·			
					 Generally defects are rare. Drilling induced bedding / lamination partings © 5° (<1/m) 	MW				Is(50) = 0.09MPa Is(50) = 0.09MPa	
32			62 (90)		Defects are predominantly wide spaced, planar, smooth, closed and clean.						
	3.72				SANDSTONE MW: Grey, massive, mainly medium to coarse					DD = 1.64t/m ³ ; WD = 2.05t/m ³ ; MC = 24.6%; UCS=747KPa	
33			99		grained, very low to low strength. Contains interbeds of siltstone app. 400mm	MW				(XW) loose sand Is(50) = 0.11MPa Is(50) = 0.12MPa	
			(100)	_	thick. Defects are rare.					Is(50) = 0.05MPa Is(50) = 5.00MPa	
34 —	2.12				MUDSTONE MW: Mottled yellow-brown, laminated, fine grained mainly low strength. Contains interbeds of siltstone in parts. Defects as above.	MW				Is(50) = 0.12MPa Is(50) = 0.09MPa Is(50) = 0.08MPa Is(50) = 0.10MPa	
_	0.52		100		Borehole terminated at 35.6m					ls(50) = 0.12MPa ls(50) = 0.14MPa	
36											
38											
39											


(c) State of Queensland (Department of Transport and Main Roads) 2020, CC BY 4.0. Please note copyright and limitation of liability notices on attached cover page.

LOGGED BY

CM / SG

Project:	<u> Ipswich Motorway Upgrade - Rocklea to Darra</u>	Page 1 of 2
Borehole No:	BH 121	
Start Depth:	24.00m	
Finish Depth:	35.60m	
Project No:	FG5779	
H No:	H10916	



(c) State of Queensland (Department of Transport and Main Roads) 2020, CC BY 4.0. Please note copyright and limitation of liability notices of attached cover page.

Project:	<u> Ipswich Motorway Upgrade - Rocklea to Darra</u>	Page 2 of 2
Borehole No:	BH 121	
Start Depth:	24.00m	
Finish Depth:	35.60m	
Project No:	FG5779	
H No:	H10916	

