COPYRIGHT NOTICE

This geotechnical log and its associated data (the Document) is licensed by the Queensland Department of Transport and Main Roads under the <u>Creative Commons Attribution 4.0 Licence</u> (CC BY 4.0). When reusing the Document, in whole or in part, please attribute the Department and author as follows: "(c) State of Queensland (Department of Transport and Main Roads) 2020, licensed under the CC BY 4.0 Licence, prepared by WSP". This licence does not apply to logos or trademarks.

LIMITATION OF LIABILITY

The CC BY 4.0 Licence contains a comprehensive Disclaimer of Warranties and Limitation of Liability. In addition, please note that this Document was prepared for Departmental use only. Reuse of the Document by anyone for any other purpose could result in error and/or loss. You should obtain professional advice before making decisions based on the contents of the Document.

When reproducing any part of this Document, you must also reproduce this limitation of liability notice in addition to the italicised attribution statement above.

Retrieved from the Queensland Geotechnical Database http://qgd.org.au/

This log has been contributed to the Queensland Geotechnical Database with the permission of WSP.

BOREHOLE ENGINEERING LOG

BOREHOLE NO.

SHEET 1 OF 4

Client: **Department of Transport and Main Roads** Date Commenced: 12/2/10 Project: **Gold Coast Rapid Transit** 12/2/10 Date Completed: Borehole Location: Proposed University Hospital Station, Parklands Drive, Ch. 19452.2 DS/NG Recorded By: Project Number: 2161016A Log Checked By: mon

Drill Model/Mounting: Drillpower Hydrapower Scout Hole Angle: 90° Surface RL: 25.04 m AHD*

100 YEARS

	CITO	le D	iameter:	75 mn	n			Bearing: Co-c	ord	s: E	81430	.53 N 62084.58 GCCC G
	В	orel	nole Infori	mation	-			Field Material De	scr	iption		
1	2		4	5	6	7	8	9	10	11	12	13
МЕТНОБ	SUPPORT	WATER	RL(m) AHD* DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	RELATIVE DENSITY / CONSISTENCY RELATIVE DENSITY / CONSISTENCY RELATIVE DENSITY / CONSISTENCY RELATIVE DENSITY / CONSISTENCY	HAND PENETROMETER (KPa)	STRUCTURE AND ADDITIONA OBSERVATIONS
TC			_		1	7777		Topsoil (Silty SAND): fine grained, grey brown	D	TITIT		TOPSOIL
3 347			- 0.15 - 0.70				СН	Silty CLAY: high plasticity, pale brown	MC <pl< td=""><td></td><td></td><td>RESIDUAL SOIL</td></pl<>			RESIDUAL SOIL
VΒ	М		- 24 1· -	SPT - 21,30 \/110mm	SPT			META-SILTSTONE: grey-white mottled orange, brown and red, extremely weathered extremely low strength				WEATHERED ROCK
*/			- - - ₋₂₃ 2· -					ĭ				
			_ 2.60 - _22 3-	30,30 /90mm	SPT			2.6 m: pale orange staining, rootlets present				
			- - - -21 ⁴⁻	SPT	SPT			8				
			_	30 /140mm				REFER TO CORED BOREHOLE LOG				
2			- - - - - - - - - - -	-								
			- - - - - - - - - -									
			–16 9- - - -					9				

CORED BOREHOLE ENGINEERING LOG

BOREHOLE NO.

UBH06

12/2/10

DS/NG

MYL

SHEET 2 OF 4 Department of Transport and Main Roads Date Commenced: 12/2/10

Client: Project: **Gold Coast Rapid Transit**

Date Completed:

Borehole Location: Proposed University Hospital Station, Parklands Drive, Ch. 19452.2 Recorded By: Project Number: 2161016A Log Checked By:

Drill Model/Mounting: **Drillpower Hydrapower Scout** 90° 25.04 m AHD* Hole Angle: Surface RL:

Bore				eter: 75 mm Bearing: Co-ords:								E 81430.53 N 62084.58 GCCC Grid		
					mat			300 4			/laterial De			
1	2	3	4	5		6	4	7	8	9	10	11	12	
МЕТНОВ	SUPPORT	WATER	CORE RECOVERY	RQD	RL(m) AHD*	i i i	DEP I H(m)	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION	WEATHERING	INFERRED STRENGTH Is(50) MPa VH 3 1.2 EH 10 EH 1	AVERAGE DEFECT SPACING mm	STRUCTURE AND ADDITIONAL OBSERVATIONS	
2)						2								
NMLC	М		70	0	- - <u>-21</u> - - -	4.70 —			COMMENCE CORING AT 4.1 m META-SANDSTONE: fine grained pale grey mottled pale red and orange CORE LOSS	xw			- 4.1 m - 4.7 m: Non intact core	
WB					-20 - - - -19 -	5.ω -5			META-SANDSTONE: medium grained white mottled pale yellow and orange, extremely weathered extremely low strength				- 6.0 m - 6.1m: SPT, 30/100mm, Refusal	
NMIC			56	0	18 	7.60	-		META-SANDSTONE: medium grained white mottled pale yellow and orange CORE LOSS					
			96	80	-17 - - - - -16	s.co -8	-		META-SANDSTONE: medium grained white mottled pale yellow and orange	xw			8.5 m: J, 80°, S, P,Clean	
			20	20		9.70 —	-		CORE LOSS					

DD 100 YEARS

Client:

CORED BOREHOLE ENGINEERING LOG

BOREHOLE NO.

UBH06

12/2/10

DS/NG

1011

Department of Transport and Main Roads

Date Commenced: 12/2/10

Project: Gold Coast Rapid Transit Date Completed:

Borehole Location: Proposed University Hospital Station, Parklands Drive, Ch: 19452.2 Recorded By:

Project Number: 2161016A Log Checked By:

Drill Model/Mounting: Drillpower Hydrapower Scout
Borehole Diameter: 75 mm

Hole Angle: 90°
Bearing: --- Co-ords: E 81430.53 N 62084.58 GCCC Grid

CORED BOREHOLE ENGINEERING LOG

BOREHOLE NO.

UBH06

SHEET 4 OF 4

Client: Project: Department of Transport and Main Roads

Date Commenced: Date Completed:

12/2/10

Borehole Location:

Gold Coast Rapid Transit Proposed University Hospital Station, Parklands Drive, Ch. 19452.2

Recorded By: Log Checked By:

12/2/10 DS/NG MOR

Project Number: Drill Model/Mounting: 2161016A

Drill	Mo				u.	Drillno		Hydrapower Scout Hole Angle:	90	0	Sur	face RL:	25.04 m AHD*
			iam			75 mm		Bearing:				ords:	E 81430.53 N 62084.58 GCCC Gr
	Bor	reho	ole Ir	nfor	mat	tion		Fi	eld N	Ma	terial De	scription	1
1	2	3	4	5		6	7	8	9	L	10	11	12
METHOD	SUPPORT	WATER	CORE RECOVERY	RQD	RL(m) AHD*	DEPTH(m)	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION	WEATHERING	0.03	INFERRED STRENGTH Is(50) MPa	AVERAGE DEFECT SPACING mm	STRUCTURE AND ADDITIONAL OBSERVATIONS
NMLC	2		100	75	- - - - -	20.10 -		INTERBEDDED META-SILTSTONE AND META-SANDSTONE: fine grained sand, pale grey mottled orange and purple (continued) 20.1 m - 20.4 m: meta-sandstone, fine grained, pale brown 20.82 m - 20.98 m: quartz vein, very high strength, fragmented, Fe stained	XW	7 P 			20.82 m: foliation angle 30° 20.82 m - 20.98 m: Non Intact Core
			100	95	- - - - - 3	21.30 -		21.3 m - 21.35 m: meta-sandstone, fine grained					
		. I i	100	06	- - - - - 2	22.70		22.7 m - 23.05 m: trace of fine grained sand					
			100	100	- - - -	23.50 - 23.50 - 23.90 - 24 -		20mm thick quartz vein 20mm thick quartz vein coarse grained quartz					
			92	10	-	24.27 -		24.27 m - 24.48 m: quartz vein					24.27 m - 24.48 m: Non Intact Core
					= 0 - - -	- 25 - - -		END OF BOREHOLE AT 25.00 m					* Horizontal and vertical data determined by ground survey
					- 1 - - -	26 -	39						6
					2 - - - - -	27 - - - - - 28 -							2
					- - - - 4	- - - 29 –							265
					-	This be	orehold	e log should be read in conjunction with Pars	ons P	Pring	kerhoffs:	9000mpan	ving standard notes

REPORT OF PHOTOGRAPHS

Borehole number:

UBH06

of

Client:

Department of

Transport and Main Roads Coordinates: E 81430.53 N 62084.58

Depth range:

4.1 m - 25.0 m

Project:

Gold Coast Rapid Transit

Surface RL:

25.04 m AHD

Inclined length:

Sheet

Borehole location:

Ch: 19500

Hole angle:

90°

Drill model/mounting:

Hydrapower Scout

Project number:

2161016A

Bearing:

_

Borehole diameter:

75 mm

