COPYRIGHT NOTICE

This geotechnical log and its associated data (the Document) is licensed by the Queensland Department of Transport and Main Roads under the <u>Creative Commons Attribution 4.0 Licence</u> (CC BY 4.0). When reusing the Document, in whole or in part, please attribute the Department as follows: "(c) State of Queensland (Department of Transport and Main Roads) 2020, licensed under the CC BY 4.0 Licence". This licence does not apply to the Queensland Government logo or trademarks.

LIMITATION OF LIABILITY

The CC BY 4.0 Licence contains a comprehensive Disclaimer of Warranties and Limitation of Liability. In addition, please note that this Document was prepared for Departmental use only. Reuse of the Document by anyone for any other purpose could result in error and/or loss. You should obtain professional advice before making decisions based on the contents of the Document.

When reproducing any part of this Document, you must also reproduce this limitation of liability notice in addition to the italicised attribution statement above.

Retrieved from the Queensland Geotechnical Database http://qgd.org.au/

ENGINEERING BOREHOLE LOG

___BH046___ BOREHOLE No SHEET _1_ of _3_ REFERENCE No ____H10616___

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/5-2009

PROJECT	BRUCE HIGHWAY (COOROY - CURRA) SECTION A GEOTECHNICAL INVESTIGATION		,
LOCATION	Cut 14	COORDINATES	484162.6 E; 7081327.0 N

JOB No

PROJECT No FG5825 _____ SURFACE R.L. 149.76m PLUNGE _____ DATE STARTED 17/8/09 GRID DATUM MGA94 _____

128/10A/901 HEIGHT DATUM AHD BEARING DATE COMPLETED 17/8/09

DRILLER R & D Drilling

AN

R.L. (m)	G BORING DRILLING	RQD ()%		MATERIAL	75	SING	INTACT STRENGTH	DEFECT SPACING (mm)	DOG	ADDITIONAL DATA	
149.76	山三工山	CORE REC %	SAMPLE	DESCRIPTION	LITHOLOGY	USC	STRENGTH	200 200 2000 2000	GRAPHIC LOG	AND TEST RESULTS	SAMPI ES
149.76		REC 76	0,	Gravelly SILT (COLLUVIUM?) Brown to mottled red, moist, firm.					0		
			A	Intermediate plasticity; relic rock fragments throughout.		(MI)				3,3,4 N=7	and the second second
148.41							-		_		
			в	PHYLLITE (XW/HW) Generally exhibits the engineering properties of light brown to grey, moist, very stiff to hard, clayey silt.		xw-		-		11,10,15 N=25	
				Rock fabric visible throughout.		HW	-				
146.76			с							14,18,23 N=41	and solars
140.70		(90)		PHYLLITE (MW) Pale greyish brown, fine grained, foliated.				E_		Clayey zone	
				Foliation dips at ~40°.						Is(50) = 0.53MPa]− Clay seam	
				Defects are generally medium spaced. Defect sets are dipping at 10°, parallel to foliation and sub-vertically. Defect surfaces						ls(50) = 0.23MPa ls(50) = 0.11MPa	
		100		are typically clay infilled.]– Clayey zone	
		(71)		Prominent clayey zones throughout.						ls(50) = 0.80MPa	
										MC = 5.6%; UCS=4.37MPa	
						мw		Ţ		ls(50) = 0.67MPa	
		100 (46)		Detailed defect descriptions are shown on Form GEOT533/8 attached.							
		100							1111]− Broken clayey zone Is(50) = 0.04MPa	
		(39)								ls(50) = 0.50MPa	
141.26		100		PHYLLITE (MW/SW) Pale grey with distinctive dark grey mottling, fine grained, foliated.						☐– Brecciated clayey zone Is(50) = 0.68MPa	
		(26)		Foliation is indistinct. See over for defect descriptions.		MW- SW					
								T		ls(50) = 3.13MPa	

(c) State of Queensland (Department of Transport and Main Roads) 2020, CC BY 4.0. Please note copyright and limitation of liability notices on attached cover page.

ENGINEERING BOREHOLE LOG

BOREHOLE No	BH046
SHEET	<u>2</u> of <u>3</u>
REFERENCE No	<u>H10616</u>

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/5-2009

PROJECT	<u>BRU</u>	<u>CE HIG</u>	HW	AY (COOROY - CURRA) SECTION A GEOT	ECH	NIC	AL IN	VESTI	GATION			
	<u>Cut</u>										ORDINATES 484162.6 E; 7081327.	<u>0 N</u>
				SURFACE R.L. <u>149.76m</u> PLUNGE								
JOB No	_128/	<u>10A/901</u>		HEIGHT DATUM <u>AHD</u> BEARING		<u> </u>	DA	TE COM	IPLETED	17/8/	09 DRILLER R&DDrilling	L
R.L. (m)	o	RQD ()%		0		Π	CT	NTACT RENGTH	DEFECT SPACING		ADDITIONAL DATA	
l l l l l l l l l l l l l l l l l l l	BORING	() 70		MATERIAL	5	HERING	511	KENGIH	(mm)	GRAPHIC LOG	AND	
DEPTH (m)	ж <u>о</u> шп		SAMPLE	DESCRIPTION	ГІТНОГОСУ				008	DIHd	- Macanopusrument	SAMPLES
법 10 139.76	CASS CASS CORSCASS CO	CORE REC %	SAN			USC	·王王:	⊑≥⊐⋜⋳	2000 2000 11111	GRA	TEST RESULTS	SAMPLE TESTS
				PHYLLITE (MW/SW) (Cont'd)							ls(50) = 0.78MPa	x
		100			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
-		(32)		Defects are generally medium to widely spaced.							MC = 3.4%; UCS=3.54MPa	UCS
				Defect sets dip at 10 and 45° with occasional sub-vertical sets. Defect	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
				surfaces are typically thinly clay infilled and iron stained.								
-				iron stained.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						ls(50) = 0.33MPa	x
Ē					×							
- 12		100								ITE		
E		(35)		12.0-12.8m: Zone with prominent clay seams (sheared zone?)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					11		
-											- Sheared zone?	
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					12		
-13					$\mathbb{M}$						ls(50) = 2.78MPa	x
	100				5						ls(50) = 0.97MPa	x
-		100										
		(78)			×						ls(50) = 2.10MPa	x
-14			510H	Detailed defect descriptions are shown on	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
				Form GEOT533/8 attached.							ls(50) = 3.12MPa	x
-					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
-					$\mathbb{M}$						ls(50) = 1.44MPa	X
15		 (78)			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MW- SW						
-		(,			$\sim$						ls(50) = 1.79MPa	x
					$\sim$							
					××							
- 16											ls(50) = 1.00MPa	
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						15(00) - 1.0000 a	x
					\sim						MC = 1.6%; UCS=11.7MPa	UCS
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
-17					$\sim$							
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
-					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
		100			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						ls(50) = 1.44MPa	
- 18		(89)			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						15(50) - 1.441VIFa	
					\sim			23.206			L- (50) - 0.00MB-	
Ē					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						ls(50) = 0.86MPa	X
-					\sim							
- 19					\sim							
					¥						ls(50) = 0.62MPa	x
E					~							
20					\$\$ \$ \$						MC = 2.6%; UCS=4.98MPa	UCS
REMARKS	<u>Detai</u>	led defec	t des	scriptions are shown on Form GEOT533/8 attach	ed. F	lezo	mete	installed	d at base.		LOGGED BY AN	

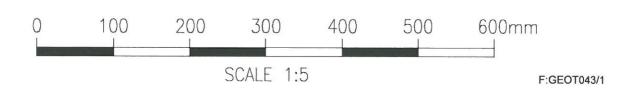
PROJECT

ENGINEERING BOREHOLE LOG

BOREHOLE No	BH046
SHEET	<u>3</u> of <u>3</u>
REFERENCE No	<u>H10616</u>

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/5-2009

BRUCE HIGHWAY (COOROY - CURRA) SECTION A GEOTECHNICAL INVESTIGATION


OCATION	<u>Cut 1</u>									ORDINATES <u>484162.6 E; 7081327.0</u>	
ROJECT No DB No				SURFACE R.L. <u>149.76m</u> PLUNGE HEIGHT DATUM <u>AHD</u> BEARING				MPLETED			
(m) (m) (m) (m) (m) (m) (m) (m) (m) (m)	AUGER CASING WASH BORING CORE DRILLING		SAMPLE	MATERIAL DESCRIPTION	К ПТНОГОСУ	USC WEATHERING	INTACT STRENGTH	DEFECT SPACING (mm)	GRAPHIC LOG	ADDITIONAL DATA AND TEST RESULTS	SAMPLES
21	11	100		PHYLLITE (MW/SW) (Cont'd)						ls(50) = 3.51MPa	x
		(87)		Detailed defect descriptions are shown on Form GEOT533/8 attached.						ls(50) = 1.97MPa	x
22 23 24 25 124.16						MW- SW				ls(50) = 0.50MPa	×
3				23.2-25.1m: Possible sheared zone with heavily disturbed foliations, microfractures and occasional brecciation.						ls(50) = 0.78MPa	×
4		 (95)								ls(50) = 1.56MPa _ Possible sheared zone, numerous closed defects)
5										Is(50) = 0.56MPa)
124.16		100			***					ls(50) = 1.35MPa ls(50) = 3.21MPa	×
6 7 8				Borehole terminated at 25.6m							
60								‡ +			
REMARK	s <u>Deta</u> i	led defe	<u>ct de</u>	scriptions are shown on Form GEOT533/8 attach	ned.	Piezo	meter installe	ed at base.		LOGGED BY AN	

Project: Bruce Highway Upgrade (Cooroy – Curra) Section A

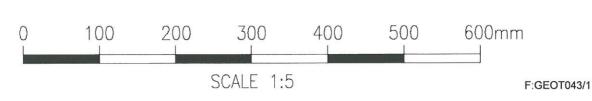
Borehole No:	
Start Depth:	
Finish Depth:	
Project No:	
H No:	

BH46 3.00m 25.60m FG5825 10616

Project: Bruce Highway Upgrade (Cooroy – Curra) Section A

Borehole No:	
Start Depth:	
Finish Depth:	
Project No:	
H No:	

BH46 3.00m 25.60m FG5825


Bruce Highway Upgrade (Cooroy - Curra) Section A

Borehole No: BH46 Start Depth: Finish Depth: Project No: H No:

Project:

3.00m 25.60m FG5825 10616

DEFECT DESCRIPTIONS OF ENGINEERING BORELOGS

[CHARACTERISATION OF DEFECTS ARE IN ACCORDANCE WITH ISRM SUGGESTED METHODS (1981)]

BOREHOLE NO .:	BH46
SHEET:	1 of 3
REFERENCE NO .:	H10616

PROJECT: Bruce Highway (Cooroy – Curra) Section A Geotechnical Investigation										
LOCATION:	Cut 14									
PROJECT NO .:	FG5825	SURFACE R.L.:	149.75	DRILLER:	R & D Drilling					
JOB NO.:	128/10A/901	DATUM:	MGA94	DATE DRILLED:	17/08/09					

DEPTH	DEFECT TYPE	DIP°	PLANARITY	ROUGHNESS	APERTURE	WALL ALTERATION	OTHER
3.04-3.20	WS						
3.24	Clay Seam	15°	PL	S	С		
3.26-3.29	WS						
3.30	Qtz Vn	25°	PL		С		
3.42-3.49	Qtz Vn						
3.50	Clay Seam	10°	PL		С		
3.54	Qtz Vn	0°	PL		С		
3.64	Crushed Seam	10°	PL		С		
3.67	Qtz Vn	15°	PL		С		
3.89-3.91	Crushed Seam	30-40°	UN		С		
3.97	Qtz Vn	25°	PL		С	W	3mm wide
4.01	Qtz Vn	20°	PL		0		
4.22	J	40°	UN	R	0	FeSt, W	
4.22-4.33	WS						
4.33	J	30°	UN	R	0	FeSt, W	
4.72	WS	75°	UN	SR	С		
4.75	J	45°	IR	R	С		
5.31	J rehealed	55°	UN		С	FeSt	

Abbreviations (as per F: GEOT 017/5 - 2009) ROUGHNESS WALL ALTERATIONS TYPE OTHER Clay Infill R Rough FeSt Iron Stained J, Js Joint, Joints CI **Slightly Rough** Bedding W Weathered В CLy Clayey Sr Smooth ΒP Co Coal Seam S Smn Secondary Mineralisation **Bedding Parting** SL Slickensided Cn Clean FP Foliation Parting Carb Carbonaceous Manganese Stained LP Sand Infill PO Polished MnSt Lamination Parting SI APERTURE PLANARITY CLV QZ Quartz Cleavage С Closed CA Calcite PL Planar Fr Fracture St Stepped 0 Open SZ Sheared Zone Chl Chlorite UN Undulating F Filled CZ Crushed Zone In Incipient T ΒZ Broken Zone Int Intersecting CU Curved Tight HFZ Highly Fractured Zone Lam (s) Lamination (s) IR Irregular Weathered Seam Di Drilling Induced WS Н Horizontal Vn Vein ٧ Vertical

NOTE: This sheet should be read in conjunction with appropriate Engineering Borelog. Defect angles were measured with respect to horizontal plane.

						BOREHOLE NO .:	BH46
						SHEET:	2 of 3
						REFERENCE NO .:	H10616
DEPTH	DEFECT TYPE	DIP°	PLANARITY	ROUGHNESS	APERTURE	WALL ALTERATION	OTHER
5.36	J	55°	PL	SR	С	FeSt	7mm wide
5.44	J	15°	PL	S	С	FeSt	Cl 1mm
5.46	J	20°	PL	S	С	FeSt	CI 3mm
5.50	J	15°	PL	SR	С	FeSt	
5.57	J	25°	St	R	С	FeSt	
5.90	J	90°	UN	SR	С	FeSt, MnSt	
6.05	J	20°	PL	SR	С		010
6.11	Qtz Vn	30°	PL	<u> </u>	С	FeSt	Cl 3mm
6.21	J .	35°	PL	S	C C	Cn	150 mm wide
6.25	Qtz Vn J	30° 70°	PL PL	SR	c	Cn	Cl 3mm
6.40	Qtz Vn	25°	PL	51	c		10 mm wide
6.61-6.65	Qtz Vn, WS	25°	UN		c		
6.79	J	15°	PL		C		
6.79-6.97	WS						
7.03	J	10°	UN	R	С	FeSt	
7.17	J	15°	UN	SR	С	Cn	
7.23	Qtz Vn	20°	PL		С		4mm wide
7.28	Qtz Vn	20°	PL		С		7mm wide
7.33	Qtz Vn	25°	PL		С		
7.37	J	70°	UN	S	С	FeSt, MnSt	
7.40	J	35°	PL	S	С	FeSt	
7.56	J	30°	PL	S	С		CI 2mm
7.74	J	30°	UN		С	FeSt	21
7.81-7.85	CZ	150	PL		С	Cn	Clayey matrix
7.97	J	45°	PL PL		C C	Cn	Clayey matrix
8.05-8.07	CZ WS	50°	PL PL		c		Clayey main
8.50	Qtz Vn	15°	PL		c		
8.61	J	10°	PL	SR	c	FeSt, W	
8.93	L J	60°	St	R	С	FeSt, W	200.000
9.02	J	45°	PL	R	С	FeSt	Clay Veneer
9.07	J	45°	PL	R	С	FeSt	Clay Veneer
9.28	J	50°	PL		С		
9.38	Qtz Vn	5-10°	IR		С		3mm wide
9.41	Qtz Vn	10°	PL		С		2mm wide
9.52	J	25°	UN	R	С	FeSt, W	
9.55	L	20°	UN	SR	С		Cl 1mm
9.83	J	10°	IR		С		
9.93	J	5-10°	St		С		
10.11	J	20°	PL		С	5-01 W	
10.24	J	55°	PL	S	c c	FeSt, W	
10.31	J	10° 20°	PL UN	R	c	FeSt, W, MnSt FeSt, W, MnSt	
10.37	L L	30°	UN	R	c	FeSt, W, MnSt	
10.47	J	15°	PL	R	С	FeSt, W, MnSt	
10.84	Qtz Vn	15°	PL		С		
11.08	Qtz Vn	5°	PL		c		6mm wide
11.14	Qtz Vn	25°	PL		С		8-12,, wide
11.16	J	20°	UN		С		
11.61	J J	35°	IR	R	С	FeSt, MnSt	
11.65-11.67	ws	20°	PL				
11.74	J	30°	PL	R	С	FeSt, MnSt	
11.88	J	80°	PL	S	С	FeSt, MnSt	
12.07	Clay Seam	70°	PL		С		
12.13-12.22	BZ				С		
12.38-12.46	WS	75°	PL		С		

						BOREHOLE NO.: BH46	
						SHEET:	3 of 3
						REFERENCE NO.:	H10616
DEPTH	DEFECT TYPE	DIP°	PLANARITY	ROUGHNESS	APERTURE	WALL ALTERATION	OTHER
12.60-12.76	WS				С		
12.81	J	15°	PL	SR	С	FeSt, MnSt	
13.07	J	15°	PL	S	С	FeSt	
13.20	J	20°	PL	S	С	FeSt	
13.37	J	45°	PL	SR	С	FeSt, MnSt	
13.46	J	15°	PL	S	С	MnSt	
13.58	J	30°	PL	SR	С	FeSt	
13.69	J	10°	PL		С		
13.73	Rehealed J	10°	PL	S	С	FeSt, MnSt	
13.84	J	30°	UN	POI	С	FeSt, MnSt	
14.09	J	15°	PL	R	С	FeSt, MnSt	
14.27	J	15°	PL	S	С	FeSt	
14.43	J	10°	UN	R	С	FeSt, MnSt	
14.55	J	25°	UN	SR	с	FeSt	
14.78	J	10°	PL	SR	С	FeSt, MnSt	
14.95	J	30°	PL	SR	С	FeSt, MnSt	
15.29	Rehealed J	20°	IR		С		
15.43	J	10°	UN	R	С	FeSt, MnSt	
15.56	J	20°	PL	SR	С	FeSt	Clay Venee
15.88	J	15°	PL	R	С	FeSt, MnSt	
16.12	J	25°	St	S	С	FeSt, MnSt	
16.29	J	15°	PL	S	С	FeSt, MnSt	
16.35	J	35°	UN	R	С	FeSt, MnSt	
17.07	J	55°	PL	SR	С		Clay Venee
17.14	L	30°	PL	S	С	FeSt, MnSt	
17.20	L	45°	PL	POL	С		Sheared surfa
17.32	L	35°	PL	SR	С	FeSt, MnSt	
17.43	J	1 5°	IR	S	С	FeSt, MnSt	
17.58	L	20°	PL	S	С	FeSt, MnSt	CI 2mm
17.62	L	20°	PL	SR	С	FeSt, MnSt	CI 2mm
17.72	J	25°	IR	SR	С		Cn
18.06	L	65°	UN	S	С		Cn
18.79	L	20°	UN	SR		MnSt	CI 2mm
18.97	J	30°	PL	SR	С	MnSt	
19.13	J	60°	PL	SR	С	MnSt. FeSt	
19.26	L	10°	PL	R	С	FeSt	Clay Venee
20.56	Ĺ	55°	PL	S	С		Cn
20.88	L	25°	UN	R	С	FeSt	
21.08	Ĺ	55°	UN	SR	С	FeSt	
21.26	j	30°	IR	R	С	MnSt. FeSt	
21.60	J	40°	PL	S	С	FeSt	Cl 2mm
21.72	J	0°	St		С	MnSt. FeSt	Clayey Matr
21.88	J	25°	St	R	С	MnSt. FeSt	
21.95	J	80°	PL	S	0	FeSt	
22.13	J	65°	UN	SR	С	FeSt	
22.43	J	20°	PL	R	С	MnSt. FeSt	
22.58	L	45°	PL	R	С	FeSt	
22.77	J	45°	UN	SR	С	MnSt. FeSt	Clay Venee
22.84	J	35°	UN	S	С	MnSt. FeSt	
23.0	J	50°	UN	SR	С	MnSt. FeSt	
23.13	DI						Clay Venee
23.49	J	0-10°	IR	S	С	FeSt	
23.68	J	50°	IR	S	С	FeSt	
24.10	J	60°	PL	S	С	FeSt, MnSt	
25.08	J	25°	UN	S	С	FeSt	CI <1MM
25.15	J	60°	IR	S	С	FeSt, MnSt	Clay Venee
25.60	J	35°	UN	R	С	FeSt	