COPYRIGHT NOTICE

This geotechnical log and its associated data (the Document) is licensed by the Cross River Rail Delivery Authority under the <u>Creative Commons Attribution 4.0 Licence</u> (CC BY 4.0). When reusing the Document, in whole or in part, please attribute as follows: "(c) Cross River Rail Delivery Authority 2023, licensed under the CC BY 4.0 Licence, prepared by Soil Surveys". This licence does not apply to logos or trademarks.

LIMITATION OF LIABILITY

The CC BY 4.0 Licence contains a comprehensive Disclaimer of Warranties and Limitation of Liability. In addition, please note that this Document was prepared for the Cross River Rail Delivery Authority use only. Reuse of the Document by anyone for any other purpose could result in error and/or loss. You should obtain professional advice before making decisions based on the contents of the Document.

When reproducing any part of this Document, you must also reproduce this limitation of liability notice in addition to the italicised attribution statement above.

Retrieved from the Queensland Geotechnical Database http://qgd.org.au/

Milton: ph +61 7 3369 6000 brisbane@soilsurveys.com.au
Gold Coast: ph +61 7 5500 0465 goldcoast@soilsurveys.com.au
Northern Rivers: ph +61 7 5523 4577 northernrivers@soilsurveys.com.au
Mackay: ph +61 7 4942 2907 mackay@soilsurveys.com.au

SOIL SURVEYS

Easting: 503257

Northing: 6960948 RL: -10.70 m Operator: SO Machine: Scout 2

BOREHOLE RECORD SHEET

Location Number: BH 311

Project Number: 110-12936 Project Name: Cross River Rail

Location: Brisbane Client: AECOM

Date: 18/01/2012 Dage: 1 OF 5

Logger: CS/DT Operator: Se	Machine: Scout 2	Date: 18/01/2012				Page: 1 OF 5
Drilling Method Depth Depth Depth Depth Depth Depth Depth		Weathering	Strength Space Estimated Space	າg ິ _ຜ	RQD	Samples and Remarks
1.00	Gravelly SAND (SP) Medium dense, medium grained, brown and black, white. Silty SAND (SM) Loose, medium grained and brown, trace of gravel.	fine to ith traces of with traces of	/eathering Grades W.E Resends weathered W.E Freshed weathered W.E	Sampl U	50 For Ted	Approved: Date:

Milton: ph +61 7 3369 6000 brisbane@soilsurveys.com.au
Gold Coast: ph +61 7 5500 0465 goldcoast@soilsurveys.com.au
Northern Rivers: ph +61 7 5523 4577 northernrivers@soilsurveys.com.au
Mackay: ph +61 7 4942 2907 mackay@soilsurveys.com.au

SOIL SURVEYS

Easting: 503257

Northing: 6960948 RL: -10.70 m

Logger: CS/DT Operator: SO Machine: Scout 2

BOREHOLE RECORD SHEET

Location Number: BH 311

Project Number: 110-12936 Project Name: Cross River Rail

Location: Brisbane Client: AECOM

Date: 18/01/2012

Page: 2 OF 5

Drilling Method Depth Depth Depth	O Silty SAND (SI	Description	Weatherin	Strength estimated	Defect	(%)	D	O-marks and	
	Silty SAND (SI			RSI/W W MS S VS ES	Spacing 20 60 200 600	Rec (%)	RQD	Samples and Remarks	
- 11.0 - 11.0 - 12.0 - 12.40 - 13.0 - 14.0	and brown, tra	M) Loose, medium grained, black ce of gravel. (continued) Medium dense, medium to coars black and yellow.	e						
14.60	COBBLES and	I GRAVEL .40m (15.20-16.60)				30	0		
16.60	- 17.0 speckled dark grey, med spaced to moderately w Clasts are subrounded, siltstone, sandstone, qu grained sandstone band clast supported.	ATE, coarse grained, pale grey grey, medium bedded, very close erately widely spaced fractures. rounded, medium grained of stone, quartz and tuff, with mediu. one band from 17.08m to 17.30m d.	m			100	87	16.86 m; DI, 5° , S, R, O, Z 17.12 m; B, 25° , P, R, O, Z 17.57 m; DI, 5° , S, R, O, Z 17.76 m; DI, 5° , S, R, O, Z 18.10 m; DI, 2° , S, R, O, Z	
18.70	SANDSTONE, bedded, closel sized gravel fro coal. SANDSTONE, medium beddii fractures, grad from 20.10m to	Deficits - 1.54m : F,60°, P,R,0,C Depth (m) Type Opi (5eg) Persently B - Bedding C - Curlinteer L - Stickensides C - Octobed C - Countineer L - Stickensides C - Octobed C - Countineer L - Stickensides C - Octobed C - Countineer L - Stickensides C - Octobed C - Countineer L - Stickensides C - Octobed C - Countineer L - Stickensides C - Octobed C - Countineer L - Stickensides C - Filled F - Countineer L - Stickensides C - Countineer L - S		Weathering Gra Westhering Gra W - Distinctly weath SW - Slightly weather SW - Slightly weather SW - Slightly weather SW - Sirong MS - Medum stron S - Strong	des Sa	100 100 mples U50 SP1 turbed	83 S	18.77 m; V, 11°, P, S, O, X 18.84 m; V, 10°, P, S, O, X 18.95 m; B, 10°, P, R, O, Z 18.96 m; J, 25°, P, R, O, Z 19.1 m; LSO = 0.8 MPa 19.0 7 m; B, 18°, P, R, O, Z 19.21 m; B, 10°, P, R, O, Z 19.25 m; LSO = 1.43 MPa	

Milton: ph +61 7 3369 6000 brisbane@soilsurveys.com.au
Gold Coast: ph +61 7 5500 0465 goldcoast@soilsurveys.com.au
Northern Rivers: ph +61 7 5523 4577 northernrivers@soilsurveys.com.au
Mackay: ph +61 7 4942 2907 mackay@soilsurveys.com.au

SOIL SURVEYS

Easting: 503257

Northing: 6960948 RL: -10.70 m

BOREHOLE RECORD SHEET

Location Number: BH 311

Project Number: 110-12936 Project Name: Cross River Rail

Location: Brisbane Client: AECOM

	ogger: C		erator: SO	Machine: Scout 2 Date: 18/	01/2012					Page: 3 OF 5	
	MWIC NIMIC Spains		Graphic	Description	Weathering	Strength Estimated RS W W MS S VS ES	Defect Spacing	Rec (%)	RQD	Samples and Remarks	
		2 	0000	CONGLOMERATE, coarse grained, pale grey speckled dark grey, medium bedded, closely to moderately widely spaced fractures. Clasts are fine gravel sized, with some medium to coarse gravel of siltstone, sandstone, quartz and tuff. Clast supported.	FR O			100	83	21.1m, ls50 = 0.69 MPa 21.25m, ls50 = 0.56 MPa -	
: Developed by Datgel								100	91	-24.57 m; J, 40° , P, S, O, Z 19.86-29.32 m; Di, 3 - 10° , S, R, O, Z 24.9m, (850 = 1.33 MPa	
BOREHOLE LOG 111-12936 NEW GPJ < <drawingfile>> 21/05/2012 14:32 8:30 002</drawingfile>		2200	0000	SANDSTONE, coarse grained, pale grey, thin to medium bedding, closely spaced fractures. CONGLOMERATE, coarse grained, pale grey speckled dark grey, medium bedded, closely spaced to moderately widely spaced fractures. Clasts are medium gravel sized of siltstone, sandstone, quartz and tuff, some fine to medium gravel and coarse sandstone.					90	25.5m, Is50 = 3.48 MPa	
RARY 2012-05.GLB Log SOIL_SURVEY			0000	CONGLOMERATE, coarse grained, pale grey speckled dark grey, medium bedded, moderately widely spaced fractures. Clasts are fine gravel sized, with some medium coarse gravel of siltstone, sandstone, quartz and tuff. Clast supported.	0			100	86	28.29m, Is50 = 3.3 MPa 28.19 m; J. 23°, P, R, O, Z 28.4m, Is50 = 2.53 MPa 28.50 m; J. 40°, P, R, O, Z - 29.25m, Is50 = 3.36 MPa	
SURVEYS				J - Joint T - Stepped V - Very rough S - Stain Q - Refueller S - Stain S - Stain S - S - Stain S - S - S - S - S - S - S - S - S - S		Weathering Grr RS - Residual So XW - Extremely weat DW - Distinctly weat SW - Slightly weath FR - Fresh Rock Streng WW - Very weak W - Weak MS - Medium stror S - Strong VS - Very strong ES - Fremely strong	illered leered l	U5 SP sturbe Sampl	0 1	Approved: Date:	

Milton: ph +61 7 3369 6000 brisbane@soilsurveys.com.au
Gold Coast: ph +61 7 5500 0465 goldcoast@soilsurveys.com.au
Northern Rivers: ph +61 7 5523 4577 northernrivers@soilsurveys.com.au
Mackay: ph +61 7 4942 2907 mackay@soilsurveys.com.au

SOIL SURVEYS

Easting: 503257

Northing: 6960948 RL: -10.70 m

Location Number: BH 311

Project Number: 110-12936 Project Name: Cross River Rail

Location: Brisbane Client: AECOM

BOREHOLE RECORD SHEET

Logger: CS/DT Operator: SO Machine: Scout 2 Date: 18/01/2012 Page: 4 OF 5										
Drilling Method NMIC Casing	Graphic Graphic	Description	Weathering Estimated	Defect Spacing	Rec (%)	RQD	Samples and Remarks			
	30.07 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Interbedded SANDSTONE and SILTSTONE, fine grained, alternating pale grey and dark grey, granular, typically medium bedded with some thin laminations, very closely spaced to moderately widely spaced fractures. Some faulting from 31.0m to 31.70m.	FR		100	86	30.22 m; J, 63° , P, S, O, Z 30.59m, ls50 = 2.89 MPa			
							31.18 m; J, 62°, P, R, O, Z 31.27 m; S, 3°, P, S, C, Z 31.36 m; S, 10°, P, S, C, Z 31.43 m; S, 10°, P, S, C, Z 31.49 m; S, 15°, P, S, C, Z 31.56 m; S, 37°, P, S, C, Z 31.59 m; S, 40°, P, S, C, Z 31.70 m; S, 25°, P, S, C, Z 31.76 m; J, 45°, C, R, O, Z 32.08 m, Is50 = 2.08 MPa			
	32.70	SILTSTONE, fine grained, alternating dark grey and grey, thinly laminated, extremely closely spaced to widely spaced fractures, with some sandstone interlaminations. Some faulting from 39.64m to 41.5m. Trace slickensides.			100	88	32.63 m; J, 32° , U, S, O, Z			
-	<u>34.0</u> — <u>35</u> .0						34.6m, ls50 = 3.12 MPa 34.72m, ls50 = 0.12 MPa			
					100	100	36.39m, ls50 = 0.65 MPa			
	<u>3</u> 7.0						36.31 m; V, 3°, D, S, C, Q 36.5m, ls50 = 1.4 MPa 37.05m, ls50 = MPa 37.2m, ls50 = 0.49 MPa			
	<u>38</u> .0 				100	66	38.49m, ls50 = 1.13 MPa			
Comments:	40.0	Defects - <u>1.54m : F,60°,P,R,O,C</u>	Weathering Grad RS - Residual Soil		ample	s	39.38 m; J, 45° , S, R, O, Z 39.61 m; S, 16° , P, S, O, Z 39.77 m; V, 9° , P, R, C, Q 39.81 m; B, 15° , P, L, O, Z			
1) Drilled from f river bed level. not NMLC. 3) B	Roating barge - all deptil 2) Note: the coring me sorehole grouted on col	ns measured from hod used was NQ3 per land to the land	othered rock MS - Medium strong	ed d	U5 SP sturbe Sampl	T]	Approved: Date:			

Milton: ph +61 7 3369 6000 brisbane@soilsurveys.com.au
Gold Coast: ph +61 7 5500 0465 goldcoast@soilsurveys.com.au
Northern Rivers: ph +61 7 5523 4577 northernrivers@soilsurveys.com.au
Mackay: ph +61 7 4942 2907 mackay@soilsurveys.com.au

SOIL SURVEYS

Easting: 503257

Northing: 6960948 RL: -10.70 m

Logger: CS/DT Operator: SO Machine: Scout 2

BOREHOLE RECORD SHEET

Location Number: BH 311 Project Number: 110-12936

Project Name: Cross River Rail

Location: Brisbane Client: AECOM

Date: 18/01/2012 Page: 5 OF 5

Depth B Depth B Description Newsparses State St	L	og	ger:	CS/DT	Operato	r: SO	Machine:	Scout 2	Date: 18/0	1/2012						Page: 5 OF 5	5
SILTSTONE, fine grained, alternating dark grey page of the widely space to wid					Depth	Graphic		Description		Weathering	Estir	mated	Spacing	Rec (%)	RQD		
### 44.0 ### 45							and grey, thinly spaced to wide	y laminated, extr ely spaced fractu	emely closely ires, with some	FR					66		
### BOREHOLE BH 311 TERMINATED AT 41.50 m ###################################				<u>-</u> - - <u>4</u> 1. - -			39.64m to 41.5	5m. Trace slicke	nsides. (continued)					100	65		
44.0 45.0 49.0 49.0 Comments: 1) Diffect from Lasting barge, all depths measured from the property of the					41.50		BOREHOLE E	3H 311 TERMIN	ATED AT 41.50 m							41.45 n ; J, 78°, P, S, C, Q	=
44.0 45.0 46.0 47.0 48.0 Comments: 1) Ordects - 1.54m : F.60*P.R.O.C. Westberring Gradus Comments: 1) Ordects of Solid Discovering method used was NOS not NNLC. 3) Borienole grouted on completion.				<u> </u>	0												=
44.0 45.0 46.0 47.0 48.0 Comments: 1) Ordects - 1.54m : F.60*P.R.O.C. Westberring Gradus Comments: 1) Ordects of Solid Discovering method used was NOS not NNLC. 3) Borienole grouted on completion.				E													=
44.0 45.0 46.0 47.0 48.0 Comments: 1) Ordects - 1.54m : F.60*P.R.O.C. Westberring Gradus Comments: 1) Ordects of Solid Discovering method used was NOS not NNLC. 3) Borienole grouted on completion.																	
44.0 45.0 46.0 47.0 48.0 Comments: 1) Ordects - 1.54m : F.60*P.R.O.C. Westberring Gradus Comments: 1) Ordects of Solid Discovering method used was NOS not NNLC. 3) Borienole grouted on completion.				E 42	0												=
45.0 47.0 48.0 49.0 Comments: 1) Diffed from floating barge - all depths measured from river hed legs 2) Note the form grateful sized was NO3 of NNLC. 3) Borehole grouted on completion.				<u> 4</u> 3.	U												_
45.0 47.0 48.0 49.0 Comments: 1) Diffed from floating barge - all depths measured from river hed legs 2) Note the form grateful sized was NO3 of NNLC. 3) Borehole grouted on completion.				F													Ξ
45.0 47.0 48.0 49.0 Comments: 1) Diffed from floating barge - all depths measured from river hed legs 2) Note the form grateful sized was NO3 of NNLC. 3) Borehole grouted on completion.												111					=
Legisland State of the Comments: 1) Drilled from floating barge - all depths measured from niver bed level, 2) Note: the corning method used was NQ3 not NMLC. 3) Borehole grouted on completion. Defects - 1.54m : F,60°,P,R,O,C Respirate Jacobs Respirate J				<u> </u>	0												\equiv
Legisland State of the Comments: 1) Drilled from floating barge - all depths measured from niver bed level, 2) Note: the corning method used was NQ3 not NMLC. 3) Borehole grouted on completion. Defects - 1.54m : F,60°,P,R,O,C Respirate Jacobs Respirate J	Datge			E													
Legisland State of the Comments: 1) Drilled from floating barge - all depths measured from niver bed level, 2) Note: the corning method used was NQ3 not NMLC. 3) Borehole grouted on completion. Defects - 1.54m : F,60°,P,R,O,C Respirate Jacobs Respirate J	oed by			<u> </u>													
Legisland State of the Comments: 1) Drilled from floating barge - all depths measured from niver bed level, 2) Note: the corning method used was NQ3 not NMLC. 3) Borehole grouted on completion. Defects - 1.54m : F,60°,P,R,O,C Respirate Jacobs Respirate J	Develo			<u>ا</u> ا	•												=
Legisland State of the Comments: 1) Drilled from floating barge - all depths measured from niver bed level, 2) Note: the corning method used was NQ3 not NMLC. 3) Borehole grouted on completion. Defects - 1.54m : F,60°,P,R,O,C Respirate Jacobs Respirate J	0.002			<u>- 4</u> 5.	U							111					_
Legisland State of the Comments: 1) Drilled from floating barge - all depths measured from niver bed level, 2) Note: the corning method used was NQ3 not NMLC. 3) Borehole grouted on completion. Defects - 1.54m : F,60°,P,R,O,C Respirate Jacobs Respirate J	32 8.3			F													Ξ
Legisland State of the Comments: 1) Drilled from floating barge - all depths measured from niver bed level, 2) Note: the corning method used was NQ3 not NMLC. 3) Borehole grouted on completion. Defects - 1.54m : F,60°,P,R,O,C Respirate Jacobs Respirate J	2012 14																
Legisland State of the Comments: 1) Drilled from floating barge - all depths measured from niver bed level, 2) Note: the corning method used was NQ3 not NMLC. 3) Borehole grouted on completion. Defects - 1.54m : F,60°,P,R,O,C Respirate Jacobs Respirate J	21/05/2			<u> </u>	0							111					
Legisland State of the Comments: 1) Drilled from floating barge - all depths measured from niver bed level, 2) Note: the corning method used was NQ3 not NMLC. 3) Borehole grouted on completion. Defects - 1.54m : F,60°,P,R,O,C Respirate Jacobs Respirate J	¥			E							Liii						=
Legisland State of the Comments: 1) Drilled from floating barge - all depths measured from niver bed level, 2) Note: the corning method used was NQ3 not NMLC. 3) Borehole grouted on completion. Defects - 1.54m : F,60°,P,R,O,C Respirate Jacobs Respirate J	Drawing			<u> </u>							Hiji						_
Legisland State of the Comments: 1) Drilled from floating barge - all depths measured from niver bed level, 2) Note: the corning method used was NQ3 not NMLC. 3) Borehole grouted on completion. Defects - 1.54m : F,60°,P,R,O,C Respirate Jacobs Respirate J				F													=
	NEW.G			<u> </u>	0												=
	12936			E													Ξ
	111											111					
				E 48.	0												_ =
	NEHO PEHO			F													=
	EY BC											111					=
	SURV			E								111					Ξ
	SOIL			<u>– 4</u> 9.	0							111					
	E Lo			F													Ξ
	2-05.G			<u> </u>													=
	RY 201			E.,	0							111					Ξ
	S C			nts:			•	Defects -	1.54m : F,60°,P,R,O,C	<u>' ' '</u>	RS - R	tesidual So	il lic	ample	s		
	of riv) D	rilled bed	from float level. 2) N	ng barge - a lote: the cori	II depthing meth	s measured from nod used was NQ3	Depth (m) Type Dip (deg) Plans B - Bedding C - C C - Clay seam D - D F - Foliation P - Pi	rity Roughness Aperature Infill unvilinear L - Slickensides C - Closed C - Clay iscontinuous P - Polished F - Filled F - Iron (anar R - Rough N - Clean K - Calc	Dride te	DW - Disti SW - Slig FR	nctly weath htly weath	nered ered	U5	0		
	SURVE	υίI	VIVIL	. <i>0)</i> DOIE	iole grouteu	OH COH	ipiduoti.	R - Fracture	U - Unid W - Wes	entified mineral	W W MS - M	Streng Very weak - Weak edium stro	th		_	Approved:	
	4	T- Contact W - Weathered rock Wis - Medicin Strong Dietarch and P / 10010 CCC.															

SOIL SURVEYS

AECOM

TITLE

Brisbane Cross River Rail Core Photo - BH 311

DRAWN DT	26/04/2012				
снескер СВ	DATE 26/04/2012				
SCALE Not To S	Scale A4				
PROJECT No 110-12936	FIGURE No 2/2				

IN-SITU PACKER PERMEABILITY TEST RESULT

PROJECT:CRRBH No.:311Packer type:DoublePROJECT No.:110-12936Test No.:1Packer pressure:2000kPa

28.00

Date: 19/01/2012 Gauge pressures measured in: kPa
Tested by: CS

Vertical depth to: Top of test section (m):

(below river bed) Base of test section (m):

 Base of test section (m):
 30.50

 Centre of test section(m):
 29.25

 Base of casing (m):
 27.00

 Ground water (m)
 TIDAL

Depth of centre of test section (m): 29.25
Length of test section (m): 2.50

Gauge Height above ground level (m):
Hole Diameter in test section (mm) 75

1st period	Time (mins)	0	5	10	15	Average
Gauge Pressure	Flow reading	995.8	998.0	998.0	998.0	Flow (I/min)
100	Water Take	0.00	2.20	0.00	0.00	0.147
2nd period	Time (mins)	0	5	10	15	Average
Gauge Pressure	Flow reading	1000.5	1000.8	1000.8	1000.9	Flow (I/min)
200	Water Take	0.00	0.30	0.00	0.10	0.027
3rd period	Time (mins)	0	5	10	15	Average
Gauge Pressure	Flow reading	1003.8	1004.9	1005.5	1006.0	Flow (I/min)
300	Water Take	0.00	1.10	0.60	0.50	0.147
4th period	Time (mins)	0	5	10	15	Average
Gauge Pressure	Flow reading	1010.0	1010.5	1012.5	1013.0	Flow (I/min)
200	Water Take	0.00	0.50	2.00	0.50	0.200
5th period	Time (mins)	0	5	10	15	Average
Gauge Pressure	Flow reading	1013.0	1013.5	1014.0	1014.6	Flow (I/min)
100	Water Take	0.00	0.00	0.50	0.60	0.073

Period	Flow (q)	Gauge Press	Gauge Press	Friction Loss (m)*		Total Head	Lugeon	Perm.
	(l/min)	(kPa)	(m of water)	Basic	Basic In extra rods		Value	(m/s)
1st	0.147	100.00	10.220	0.000	0.000	39.470	0.152	1.65E-08
2nd	0.027	200.00	20.440	0.000	0.000	49.690	0.022	2.39E-09
3rd	0.147	300.00	30.660	0.000	0.000	59.910	0.100	1.09E-08
4th	0.200	200.00	20.440	0.000	0.000	49.690	0.164	1.79E-08
5th	0.073	100.00	10.220	0.000	0.000	39.470	0.076	8.27E-09

^{*}Where friction loss is assumed to be negligible.

N.B. Pressure Conversion: 1 bar = 100 kPa = 14.503 psi

IN-SITU PACKER PERMEABILITY TEST RESULT

PROJECT:CRRBH No.:311Packer type:DoublePROJECT No.:110-12936Test No.:2Packer pressure:2000kPa

Date: 19/01/2012 Gauge pressures measured in: kPa
Tested by: CS

Vertical depth to: Top of test (below river bed) Base of test

Top of test section (m):	19.00
Base of test section (m):	21.00
Centre of test section(m):	20.00
Base of casing (m):	18.00
Ground water (m)	TIDAL

Depth of centre of test section (m):	20.00
Length of test section (m):	2.00

Gauge Height above ground level (m):		
Hole Diameter in test section (mm)	75	

1st period	Time (mins)	0	5	10	15	Average
Gauge Pressure	Flow reading	1024.5	1024.8	1025.1	1025.4	Flow (I/min)
100	Water Take	0.00	0.30	0.30	0.30	0.060
2nd period	Time (mins)	0	5	10	15	Average
Gauge Pressure	Flow reading	1026.6	1026.8	1026.9	1027.1	Flow (I/min)
200	Water Take	0.00	0.20	0.10	0.20	0.033
3rd period	Time (mins)	0	5	10	15	Average
Gauge Pressure	Flow reading	1027.8	1027.8	1030.0	1031.0	Flow (I/min)
300	Water Take	0.00	0.00	2.20	1.00	0.213
4th period	Time (mins)	0	5	10	15	Average
Gauge Pressure	Flow reading	1031.0	1031.2	1032.1	1033.0	Flow (I/min)
200	Water Take	0.00	0.20	0.90	0.90	0.133
5th period	Time (mins)	0	5	10	15	Average
Gauge Pressure	Flow reading	1033.0	1033.1	1033.3	1033.5	Flow (I/min)
100	Water Take	0.00	0.00	0.20	0.20	0.027

Period	Flow (q)	Gauge Press	Gauge Press	Friction Loss (m)*		Total Head	Lugeon	Perm.
	(l/min)	(kPa)	(m of water)	Basic	In extra rods	(m)	Value	(m/s)
1st	0.060	100.00	10.220	0.000	0.000	30.220	0.101	1.05E-08
2nd	0.033	200.00	20.440	0.000	0.000	40.440	0.042	4.34E-09
3rd	0.213	300.00	30.660	0.000	0.000	50.660	0.215	2.22E-08
4th	0.133	200.00	20.440	0.000	0.000	40.440	0.168	1.74E-08
5th	0.027	100.00	10.220	0.000	0.000	30.220	0.045	4.65E-09

^{*}Where friction loss is assumed to be negligible.

N.B. Pressure Conversion: 1 bar = 100 kPa = 14.503 psi