COPYRIGHT NOTICE

This geotechnical log and its associated data (the Document) is licensed by the Queensland Department of Transport and Main Roads under the <u>Creative Commons Attribution 4.0 Licence</u> (CC BY 4.0). When reusing the Document, in whole or in part, please attribute the Department and author as follows: "(c) State of Queensland (Department of Transport and Main Roads) 2020, licensed under the CC BY 4.0 Licence, prepared by WSP". This licence does not apply to logos or trademarks.

LIMITATION OF LIABILITY

The CC BY 4.0 Licence contains a comprehensive Disclaimer of Warranties and Limitation of Liability. In addition, please note that this Document was prepared for Departmental use only. Reuse of the Document by anyone for any other purpose could result in error and/or loss. You should obtain professional advice before making decisions based on the contents of the Document.

When reproducing any part of this Document, you must also reproduce this limitation of liability notice in addition to the italicised attribution statement above.

Retrieved from the Queensland Geotechnical Database http://qgd.org.au/

This log has been contributed to the Queensland Geotechnical Database with the permission of WSP.

BOREHOLE ENGINEERING LOG

BOREHOLE NO.

18/2/10

18/2/10

NG

LMGK

SHEET 1 OF 3

Borehole Location:

Client:

Project:

Department of Transport and Main Roads

Gold Coast Rapid Transit

Smith Street Motorway, Ch: 20365.3

Project Number: 2161016A

Hole Angle:

90°

Surface RL:

14.21 m AHD*

Date Commenced:

Date Completed:

Log Checked By:

Recorded By:

Drill Model/Mounting: **Drillpower Jackro 350** Borehole Diameter: 75 mm Bearing: E 81886.75 N 61621.62 GCCC Grid* Co-ords:

	75 mm			-ord			.75 N 61621.62 GCCC Grid
Borehole Infor		7 1 2 1	Field Material De		-		
SUPPORT & WATER & WATER AL(m) AHD*	FIELD TEST G	GRAPHIC LOG LOSC SYMBOL ®	9 SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	11 RELATIVE DENSITY / CONSISTENCY BLOOM LS	HAND PENETROMETER 다 (kPa)	13 STRUCTURE AND ADDITIONAL OBSERVATIONS
VB C -14	-		FILL:	_		110	FILL
- 0.50 - 1 - 13	SPT - 2,4,8 SPT		Sandy SILT: pale grey, fine to medium gravel sand.	MC~PL			ALLUVIUM
- 1.40 - 2 - 12 2.20	N=12		Gravelly CLAY: brown, low plasticity clays, fine to medium grained gravel of quartz and fragments of meta-siltstone (extremely weathered, extremely low strength).				
-11	U50	1/	CLAY: high plasticity, grey mottled red.	MC>PL		560 580 600	RESIDUAL SOIL
- - -10 - - - - 5	SPT 3,6,10 SPT N=16		4.2 m: colour change to grey no mottling.	8			
- 6 - 8 - 7 - 7 - 7 - 7 - 8 - 6 - 6 - 9	SPT - 20,23,22 SPT N=45		META-SILTSTONE: pale grey-yellow mottled red, extremely weathered, extremely low strength, Fe stained.			360 400 600	WEATHERED ROCK
	This boreh	ole log should	d be read in conjunction with Parsons Brinckerhoff's	acco	mpanying s	tandard	notes.

BOREHOLE ENGINEERING LOG

BOREHOLE NO.

RTBH06

SHEET 2 OF 3 18/2/10

18/2/10

NG

1 mgk

Client: Department of Transport and Main Roads Project:

Gold Coast Rapid Transit

Borehole Location: Project Number:

Smith Street Motorway, Ch: 20365.3

2161016A

Date Commenced:

Date Completed:

Log Checked By:

Recorded By:

				-	-				1		1	
1 2	2 :	3	4	5	6	7	8	9	10		12	13
METHOD	NOTION I	RL(m) AHD*	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	RELATIVE DENSITY / CONSISTENCY BLANCE STATE OF THE PROPERTY O	HAND PENETROMETER (RPa)	STRUCTURE AND ADDITIONA OBSERVATIONS
VB		- 4 - - - - - 3	- - - 11 – -	SPT 30 //100mm	SPT			META-SILTSTONE: pale grey-yellow mottled red, extremely weathered, extremely low strength, Fe stained. (continued) 10.0 m: change to highly weathered, very low strength.				──SPT hammer bounce, no
+	+				\vdash			REFER TO CORED BOREHOLE LOG				penetration
		- 2 - 1 - 1 1 1 1 1 1 2 3 4 4	12									

CORED BOREHOLE ENGINEERING LOG

BOREHOLE NO.

RTBH06

SHEET 3 OF 3

18/2/10

18/2/10

NG

Client: Department of Transport and Main Roads

Project: **Gold Coast Rapid Transit**

Borehole Location: Smith Street Motorway, Ch: 20365.3

2161016A Project Number:

Drill Model/Mounting: Drillpower Jackro 350

Hole Angle:

90° Surface RL:

LM9L 14.21 m AHD*

Date Commenced:

Date Completed:

Log Checked By:

Recorded By:

100 100 CORE RECOVERY P	100 90 RQD G	mation 6 (w) AHD 11 3 - 12 2 - 13 1 - 1	7 CRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION COMMENCE CORING AT 11.6 m META-SILTSTONE: pale grey to green, Fe staining along bedding/foliation.	THERING 60	Aterial Description of the control o	11 AVERAGE DEFECT SPACING mm	Bedding laminations at 45° 11.6 m - 13.9 m: numerous Fe stained laminations 1 mm - 10 mm spacing 12.1 m - 12.3 m: J, 75°, P, S, clean with
100 100 CONE RECOVERY	100 90 RQD	- 4 - 11- 3 - 12- 2 - 2 - 13-		SOIL/ROCK MATERIAL FIELD DESCRIPTION COMMENCE CORING AT 11.6 m META-SILTSTONE: pale grey to green,	MEATHERING WEATHERING	INFERRED STRENGTH (1950) MPa VH 1 3 1970 MPa WH 1 3 1970 MPa WH 2 1970 MPa MPa MPa MPa MPa MPa MPa MPa	AVERAGE DEFECT SPACING mm 0000000000000000000000000000000000	STRUCTURE AND ADDITIONAL OBSERVATIONS Bedding laminations at 45° 11.6 m - 13.9 m: numerous Fe stained laminations 1 mm - 10 mm spacing 12.1 m - 12.3 m: J, 75°, P, S, clean with
100 100	100 90	- 4		META-SILTSTONE: pale grey to green,	MW			11.6 m - 13.9 m: numerous Fe stained laminations 1 mm - 10 mm spacing 12.1 m - 12.3 m: J, 75°, P, S, clean with
	_	- - - 13-			MW- SW		i 🛭 i 🕇	12.1 m - 12.3 m: J, 75°, P, S, clean with
100	08		. — .					Fe oxide coating, 1-2mm thick (healed). 12.5 m: J, 75°, P, S, clean 12.6 m - 13.7 m: DB x 20 12.85 m - 12.9 m: Non intact core
	+	- 14		13.8 m; colour change to dark grey and carbonaceous (?).	FR			12.95 m: rotational/spin marks. 13.25 m - 13.35 m: Non intact core 13.4 m - 13.46 m: Non intact core 13.5 m - 13.7 m: Non intact core Bedding laminations 45°, S, foliation 75°
		- 0		END OF BOREHOLE AT 14.00 m				Limit of Investigation. Depth of investigation limited due to permit time restrictions * Horizontal and vertical data determined by Ground Survey
×		- 16 – 2 - - - 17 –						
	-	3 - - - 4 - 4 -						
	-	- 19 – 5 - -						¥
			2	2 173 184 195 1	2	2	2 -	2

REPORT OF PHOTOGRAPHS

Borehole number:

RTBH06

Sheet Department of E 81886.75 N 61621.62 Client: Transport and Coordinates: Depth range: 11.6 m - 14.0 m Main Roads **Gold Coast** 14.21 m AHD Project: Surface RL: Inclined length: Rapid Transit Borehole location: Ch: 20207.6 Hole angle: 90° Drill model/mounting: **Hydrapower Scout** Project number: 2161016A Bearing: Borehole diameter: 75 mm

