COPYRIGHT NOTICE

This geotechnical log and its associated data (the Document) is licensed by the Queensland Department of Transport and Main Roads under the <u>Creative Commons Attribution 4.0 Licence</u> (CC BY 4.0). When reusing the Document, in whole or in part, please attribute the Department as follows: "(c) State of Queensland (Department of Transport and Main Roads) 2020, licensed under the CC BY 4.0 Licence". This licence does not apply to the Queensland Government logo or trademarks.

LIMITATION OF LIABILITY

The CC BY 4.0 Licence contains a comprehensive Disclaimer of Warranties and Limitation of Liability. In addition, please note that this Document was prepared for Departmental use only. Reuse of the Document by anyone for any other purpose could result in error and/or loss. You should obtain professional advice before making decisions based on the contents of the Document.

When reproducing any part of this Document, you must also reproduce this limitation of liability notice in addition to the italicised attribution statement above.

Retrieved from the Queensland Geotechnical Database http://qgd.org.au/

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/2-2004

BOREHOLE No	BH13
SHEET	$-\frac{1}{2}$ of $-\frac{7}{2}$
REFERENCE NO	H9562

A. DISSANAYAKÉ (DISS)

		RADE PROJECT - GATEWAY BRIDGE DUF	PLIC.	<u>ATIC</u>	N FOUNDA	TION IN	<u>VEST</u>	IGATION
								OORDINATES 10332.7 E; 167726.7 N
	<u>FG5388</u>							
JOB No		DATUM AHD		DAT	E COMPLETI	ED <u>18/3/</u>	05	DRILLER CAIRNS DRILLING
(m) R.L. (m) CED1H (m) CED	CORE DRILLING CORE DRILLING % 03 SAMPLE SAMPLE	MATERIAL DESCRIPTION	LITHOLOGY	USC	MTACT STRENGTH ボスエスニ	DEFECT SPACING (mm)	GRAPHIC LOG	ADDITIONAL DATA AND TEST RESULTS WWS
-9.55	111	ESTUARINE SILTY CLAY	<u></u>		11111	11111		w t-
J 31/8/05		Dark grey moist firm to stiff. High plasticity.		ОН	-	-		
90.11- 10.01-		ESTUARINE SILTY SAND			-	- · · · · · · · · · · · · · · · · · · ·		
2 ENGINEERING BC		Dark grey moist to mainly wet loose. Fine grained sand with some shell fragments.		SC- SM	-			8,5,4 N=9
GATEWAY UPGRADE PROJECT G		LOW GRADE COAL. BLACK MAINLY DULI. TO VITREOUS FINE GRAINED THINLY LAMINATED FRAGILE CARBONACEOUS SEDIMENTARY ROCK HW: Black moist hard gravelly silt gradually grading into very low to low strength coal. Frequent completely weathered minor siltstone interbeds/seams exhibiting engineering properties of high plastic clay.						
80REHOLE WITH LITHOLOGY MEERA PIER 6 BOREHOLES-GATEWAY BRIDGE-				HW				22,10/10,HB N>50
310H3 5 -14.55 REMARKS	This borelog should	be read in conjunction with the appropriate Defect	Descri	riotic	n Sheete Do	ofact analog	hava	

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/2-2004

A. DISSANAYAKE (DISS)

GATEWAY UPGRADE PROJECT - GATEWAY BRIDGE DUPLICATION FOUNDATION INVESTIGATION PROJECT PIER 6 - NORTHERN FACE OF THE PILE CAP LOCATION COORDINATES 10332.7 E; 167726.7 N PROJECT No _FG5388 _____ SURFACE R.L. __-9.55 __. DATE STARTED _17/3/05__ DATUM SETP JOB No DATUM __AHD__ DATE COMPLETED _18/3/05__ DRILLER CAIRNS DRILLING ŘΙ ROD INTACT DEFECT BORING (m) ()% STRENGTH SPACING ADDITIONAL DATA DEPTH (m) MATERIAL (mm) AND SAMPLES DESCRIPTION CORE FESTS WEAT WEAT VL MEAT VL M TEST RESULTS REC % 5 -14.55 LOW GRADE COAL HW: (As above) HW 30/85,-,-04.GDT -15.65 SPI N>50 MW: Black mainly dull to vitreous, mainly (20)low to medium strength. Silfstone interbed ENGINEERING BOREHOLE 09 Frequent siltstone interbeds up to 160mm. Sittstone interbed Defects: - Frequent lamination/bedding Siltstone interbed partings<20°(3-4/m) - Weathered and fractured seams Is(50)=0.20 MPa Is(50)=0.59 MPa (<250mm) 0 - Occasional joints @ 35° and 70° (1/3m) Siltstone interbed MEERA PIER 6 BOREHOLES-GATEWAY BRIDGE - GATEWAY UPGRADE PROJECT.GPJ ls(50)=0.24 MPa MW Siltstone interbed ls(50)=0.15 MPa ls(50)=0.28 MPa 0 Siltstone interbed Is(50)=0.08 MPa Siltstone interbed 0 ls(50)=0.15 MPa ls(50)=0.13 MPa ls(50)=0.22 MPa 0 Is(50)=0.10 MPa Siltstone interbed Is(50)=0.33 MPa BOREHOLE WITH LITHOLOGY Siltstone interbed Is(50)=0.06 MPa Is(50)=0.07 MPa Coreloss (55)REMARKS This borelog should be read in conjunction with the appropriate Defect Description Sheets. Defect angles have been LOGGED BY

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/2-2004

A. DISSANAYAKE (DISS)

GATEWAY UPGRADE PROJECT - GATEWAY BRIDGE DUPLICATION FOUNDATION INVESTIGATION **PROJECT** PIER 6 - NORTHERN FACE OF THE PILE CAP LOCATION COORDINATES 10332.7 E; 167726.7 N PROJECT No <u>FG5388</u> ____ SURFACE R.L. __-9.55 __. DATE STARTED 17/3/05 DATUM SETP JOB No DATUM _ AHD _ . DATE COMPLETED 18/3/05 DRILLER CAIRNS DRILLING R.L RQD (a) (b) (c) CASING (c) (c) CASE DRILLING INTACT DEFECT ()% STRENGTH SPACING ADDITIONAL DATA DEPTH (m) MATERIAL (mm) AND GRAPHIC SAMPLES DESCRIPTION SAMPL TESTS CORE TEST RESULTS REC % 10 LOW GRADE COAL MW: (As above). Is(50)=0.16 MPa мν ls(50)=0.32 MPa 0 High strength siltstone -20.37 SILTSTONE FINE GRAINED THINLY LAMINATED SEDIMENTARY ROCK GDT SW: Pale grey to grey fine grained thinly Is(50)=0.08 MPa Is(50)≃0.08 MPa \$ laminated mainly low to medium strength. SW ENGINEERING BOREHOLE 09 UCS=6.6MPa Defects: Generally rare. WD=2336N/m2 Occasional drilling induced lamination Is(50)=0.27 MPa Is(50)=0.03 MPa partings @ 30° (1-3/m). o -21.10 Clay seam INTERBEDDED LOW GRADE COAL SILTSTONE AND SANDSTONE. LOW HW siltstone interbed **GRADE COAL DOMINANT** SW: Pale grey to black fine grained laminated/interbedded mainly medium to high strength. 12 GPJ Defects: Is(50)=0.27 MPa 0 - Lamination/bedding partings<10° (4/m)
- Weathered seams <50mm
- Joints @ 50° to 80° (2-3/m) PROJECT Becoming predominantly sandstone between 12.5m and 13.6; some altered and GATEWAY UPGRADE weathered zones along bedding/lamination partings. (42)Predominently sandstone MEERA PIER 6 BOREHOLES-GATEWAY BRIDGE Is(50)=0.40 MPa SW ls(50)=0.47 MPa ls(50)=0.21 MPa O WITH LITHOLOGY Broken zone LL=30.8%; Pi=9.5% REMOLE Clay seam Coreloss REMARKS This borelog should be read in conjunction with the appropriate Defect Description Sheets. Defect angles have been LOGGED BY

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/2-2004

A. DISSANAYAKE (DISS)

PRO	JECT	<u>GATEWAY U</u>	PGRADE PROJECT - GATEWAY BRIDGE DU	PLICATION FOUNDATION INVE	STIGATION
LOC	ATION	PIER 6 - NOF	THERN FACE OF THE PILE CAP		COORDINATES 10332.7 E; 167726.7 N
PRO	JECT No	FG5388	SURFACE R.L9.56	DATE STARTED 17/3/05	DATUM SETP
JOE	No		DATUMAHD	DATE COMPLETED 18/3/05	
DEPTH (m)	R.L. (m)	COSE PROGRAMS CORE PRICLING CORE PRICK CORE	MATERIAL DESCRIPTION	TOTATAIL TOT	ADDITIONAL DATA AND TEST RESULTS ADDITIONAL DATA
15	-24.55 -24.60	The second secon	INTERBEDDED LOW GRADE COAL	SW	Coreloss
16	-25.30	(95)	SILTSTONE AND SANDSTONE. LOW GRADE COAL DOMINANT SW: (As above) MUDSTONE SW: Pale grey to black grey fine grained thinly taminated low to mainly medim strength. Defects: Generally rare Occasional drilling induced lamination partings @ 5° (1/m) Occasional weathered and clay seams <30mm.	× × × × × × × × × × × × × × × × × × ×	UCS=10.8MPa
ING BONEHOLE OF THE			SANDSTONE Pale grey to dark grey fine grained mainly massive to slightly laminated, mainly medium to high strength with occasional very high strength bands. Defects: Generally rare Occasional lamination partings <20°(3/2m).		Is(50)=0.41 MPa x Is(50)=0.76 MPa o Is(50)=0.46 MPa x Is(50)=0.46 MPa x Is(50)=0.89 MPa o UCS=21.6MPa WD=2462N/m² Is(50)=0.55 MPa Is(50)=0.78 MPa o
17			Defects are generally drilling induced planar, smooth with no alteration or infillings.	sw	UCS=24.74MPa WD=2501N/m ²
					UCS=22MPa MC=2.75% WD=2500N/m ² Is(50)=0.56 MPa Is(50)=0.65 MPa
- 18	-27.55	100 (89)	INTERBEDDED SILTSTONE AND MUDSTONE SW: Grey to black grey, fine grained thinly laminated, mainly medium to high strength. More interbedded sandstone below 18.75m	× ×	UCS=64.4MPa WD=2827N/m ² Is(50)=0.50 MPa Is(50)=0.37 MPa Is(50)=0.35 MPa Is(50)=0.65 MPa UCS=16.4MPa WD=2475N/m ²
TIEN O BONETIOLEGY			Defects: Generally rareOccasional drilling induced lamination partings @ 30° (1/2m) - Occasional joints @ 85° (3/m).	× × × × × × × × × × × × × × × × × × ×	UCS=27.3MPa Is(50)=0.41 MPa Is(50)=0.63 MPa O Is(50)=0.66 MPa X
			Defects are generally plannar, rough and closed with no ironstaining or alteration.	× × × × × × × × × × × × × × × × × × ×	Is(50)=1.00 MPa o Is(50)=0.66 MPa x Is(50)=1.38 MPa o
SOREMOLE WITH CITROLOGY	-29.25		SANDSTONE (See next page)	× × × × × × × × × × × × × × × × × × ×	Is(50)=0.50 MPa x s(50)=1.97 MPa o
0 [20					
F	EMARKS	This borelog sh	ould be read in conjunction with the appropriate Defec	t Description Sheets. Defect angles ha	ave been LOGGED BY

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/2-2004

___BH13__ BOREHOLE No __5__ of __7 SHEET _H9562 REFERENCE No

LOGGED BY

A. DISSANAYAKE (DISS)

GATEWAY UPGRADE PROJECT - GATEWAY BRIDGE DUPLICATION FOUNDATION INVESTIGATION PROJECT PIER 6 - NORTHERN FACE OF THE PILE CAP LOCATION COORDINATES 10332.7 E; 167726.7 N PROJECT No _FG5388 _ _ _ _ SURFACE R.L. __-9.55 __ DATE STARTED 17/3/05 DATUM SETP ____. JOB No DATUM AHD DATE COMPLETED 18/3/05 DRILLER CAIRNS DRILLING R.L INTACT DEFECT BORING (m) ()% STRENGTH SPACING ADDITIONAL DATA Œ MATERIAL DEPTH (LITHOLOGY AND SAMPLE SAMPLES DESCRIPTION CORE USO WEATHER TEST RESULTS -29.55 REC % 20 SANDSTONE SW: Pale grey to dark grey fine grained mainly massive to slightly laminated mainly Is(50)=6.31 MPa SW UCS=130.2MPa Is(50)=5.57 MPa very high strength. o WD≈2951N/m Some mudstone interbeds up to 100mm. -29.99 Defects: Generally rare. Occasional lamination partings<30° Is(50)=1.79 MPa 0 INTERBEDDED MUDSTONE AND SANDSTONE. SANDSTONE ls(50)=0.79 MPa × DOMINANT BOREHOLE WITH LITHOLOGY MEERA PIER 8 BOREHOLES-GATEWAY BRIDGE - GATEWAY UPGRADE PROJECT. GPJ ENGINEERING BOREHOLE 09_04.GDT 31/8/05 SW: Grey to black, fine grained interbedded /intertaminated mainly medium SW (93)21 to high strength. Defects: Generally rare. -30.81 - Broken zone <40mm. SANDSTONE ls(50)=1.27 MPa ٥ SW: Pale grey to white fine grained slightly UCS=31.0MPa Is(50)=1.27 MPa massive to laminated medium to mainly WD=2433/m high strength. ls(50)=1.27 MPa ls(50)=2.43 MPa 0 Defects: Generally rare. SW ls(50)=0.63 MPa ls(50)=1.23 MPa 0 UCS=31.0MPa WD=2461N/m ls(50)=0.54 MPa Х Is(50)=0.74 MPa 0 -31.79 MUDSTONE SW: Dark grey to black, fine grained thinly laminated mainly medium to high strength. Sandstone interbed Defects: Generally rare. ls(50)=1.24 MPa 0 -Occasional drilling induced lamination Is(50)=0.38 MPa partings @ 20° (3/m). UCS=46.85MPa WD=2435N/m ls(50)=0.55 MPa х Is(50)=1.46 MPa 0 SW Is(50)=1.11 MPa x UCS=71.7MPa WD=2497N/m² Is(50)=2.75 MPa 0 ls(50)=1.44 MPa 0 LL=41%; PI=17% ls(50)=2.50 MPa -33.20 INTERBEDDED MUDSTONE AND Clay seam SANDSTONE. SANDSTONE DOMINANT MW - SW : Pale grey to grey, low to medium strength, altered and erodable MW (70) SW throughout. LL=38.4%; PI=15.6%; LS=12.4% Defects: Lamination partings <35° (1-2/m) -33.80 SW: Pale grey to dark grey, fine grained, interbedded/interlaminated, mainly medium to high strength. Defects: - Lamination partings <30° (3/m) - Broken zones <600mm SW - Occasional joints @ 60° (**/m) Significant alteration and weathering along UCS=11.2MPa; WD=2567N/m some joint planes especially below 26m. REMARKS This borelog should be read in conjunction with the appropriate Defect Description Sheets. Defect angles have been

BOREHOLE WITH LITHOLOGY MEERA PIER 6 BOREHOLES-GATEWAY BRIDGE - GATEWAY UPGRADE PROJECT GPJ. ENGINEERING BOREHOLE 09. 04.GDT 3.1/8/05

ENGINEERING BOREHOLE

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/2-2004

A. DISSANAYAKE (DISS)

GATEWAY UPGRADE PROJECT - GATEWAY BRIDGE DUPLICATION FOUNDATION INVESTIGATION **PROJECT** PIER 6 - NORTHERN FACE OF THE PILE CAP LOCATION COORDINATES 10332.7 E; 167726.7 N PROJECT No FG5388 SURFACE R.L. __-9.55 __. DATE STARTED _17/3/05_ DATUM SETP ______ JOB No DATE COMPLETED _18/3/05__ DATUM _AHD _ DRILLER CAIRNS DRILLING ROD INTACT DEFECT BORING ()% (m) ADDITIONAL DATA STRENGTH SPACING Ξ MATERIAL LITHOLOGY AND GRAPHIC SAMPLES DESCRIPTION SAMPL CORE TESTS USC WEAT 프로프로그국의 88888 TEST RESULTS REC % -34.55 SW: (As above) Weathered broken and altered zone Significant alteration and weathering along Is(50)=0.54 MPa some joint planes especially below 26m. х Is(50)=1.72 MPa Defects are generally planar, smooth and closed with no alteration or infillings. ls(50)=0.41 MPa X O SW Is(50)=1.04 MPa 100 Broken zone. (83) -36.45 SANDSTONE SW: Pale grey to white, slightly massive to is(50)=3.26 MPa x o mainly laminated, high to mainly very high Is(50)=3.56 MPa SW Defects: - Lamination partings<30° (3/0.5m)-37.00 - Joints <30° (2/0.5m)
INTERBEDDED MUDSTONE AND SANDSTONE. MUDSTONE DOMINANT Is(50)=0.33 MPa Is(50)=2.07 MPa Is(50)=0.51 MPa MW-SW: Grey to black, fine grained, 0 interbedded /interlaminated, mainly high to х 0 very high strength. Is(50)=1.55 MPa Defects: Is(50)=0.34 MPa х SW - Lamination partings <35° (5/2m) - Joints @ 70° (3/m) ls(50)=1.32 MPa 0 UCS=14.50MPa; WD=2454N/m² is(50)=0.40 MPa Is(50)=1.17 MPa MW Broken zone 100 Is(50)=1.15 MPa ò Is(50)=0.23 MPa Is(50)=1.02 MPa SW 0 Is(50)≃0.27 MPa -39.11 Is(50)=1.77 MPa 0 MUDSTONE SW: (As below). SW REMARKS This borelog should be read in conjunction with the appropriate Defect Description Sheets. Defect angles have been LOGGED BY

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/2-2004

PRO	JECT				RADE PROJECT - GATEWAY BRIDGE DU					VES1	TIGATION	
	ATION	PIEF	<u> 6 - NO</u>	RTH	<u>IERN FACE OF THE PILE CAP</u>				-	C	OORDINATES 10332.7 E; 167726.7	N
PRO	JECT No	_F <u>G</u> 5	<u> </u>		SURFACE R.L9.55			DATE START		<u>′0</u> 5	DATUM <u>SETP</u>	
JÓB	No				DATUM AHD		DAT	E COMPLET	ED <u>18/3</u>	05	DRILLER CAIRNS DR	ILLING .
S DEPTH (m)	R.L. (m)	CASING WASH BORING CORE DRILLING	RQD ()% CORE REC%	SAMPLE	MATERIAL DESCRIPTION	LITHOLOGY	USC	INTACT STRENGTH	DEFECT SPACING (mm)	GRAPHIC LOG	ADDITIONAL DATA AND TEST RESULTS	SAMPLES
31			100 (99)		MUDSTONE SW: Dark grey to black, fine grained thinly laminated mainly medium to high strength. Minor sandstone interbeds throughout. Defects: Generally rare Occasional drilling induced lamination partings @ 20° (1-3/m) - Joints @ 75° (3/m) - Broken and fractured zones up to 400mm. Defects are generally planar, smooth and closed with no discolouration or alteration.						Is(50)=0.62 MPa Is(50)=3.06 MPa UCS=33.1MPa; WD=2529N/m ² Is(50)=0.59 MPa Is(50)=2.31 MPa Is(50)=2.51 MPa	x 0 -
-33				11 - 11 - 11 - 11 - 11 - 11 - 11 - 11			SW				Is(50)=0.72 MPa Is(50)=1.83 MPa Is(50)=1.20 MPa	
32			100								Is(50)=1.37 MPa Is(50)=1.00 MPa Is(50)=0.65 MPa Is(50)=1.32 MPa	0 x
	,.							- Leavenne		Home	Drillcore remained in the borehole.	
36	-4 <u>4.45</u>				Borehole terminated at 34.8m	F	-	<u> </u>	. :			
35					Doronolo terminateu at 34.011t	<u></u>	\bot	<u> </u>				

REMARKS This borelog should be read in conjunction with the appropriate Defect Description Sheets. Defect angles have been measured with respect to a horizontal plane.

LOGGED BY
A. DISSANAYAKE (DISS)

Project: Gateway Upgrade Project - Gateway Bridge

Borehole No: BH 13

Start Depth: Finish Depth:

6.10m 34.80m FG 5388

Project No: H No:

9562

Project: Gateway Upgrade Project - Gateway Bridge

Borehole No: BH 13

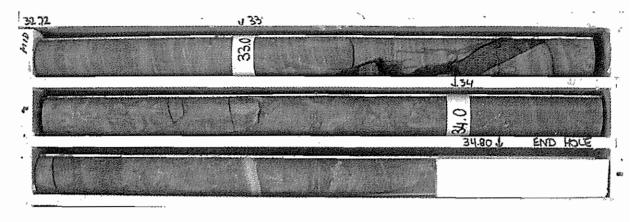
Start Depth: Finish Depth: Project No: 6.10m 34.80m FG 5388

H No:

9562

Gateway Upgrade Project - Gateway Bridge Project:

Borehole No: BH 13


Start Depth: Finish Depth: 6.10m 34.80m

Project No:

FG 5388

9562

Geotechnical Branch

35 Butterfield Street HERSTON Q 4006 Phone: (07) 38343035 Fax: (07) 38343011

DEFECT DESCRIPTIONS OF ENGINEERING BORELOGS

[CHARACTERISATION OF DEFECTS ARE IN ACCORDANCE WITH ISRM SUGGESTED METHODS (1981)]

BOREHOLE NO **BH13**

SHEET 1 of 6

REFERENCE NO:

H9562

PROJECT

GATEWAY UPGRADE PROJECT - GATEWAY BRIDGE DUPLICATION FOUNDATION

INVESTIGATION

LOCATION

PIER 6 - NORTHERN FACE OF THE PILE CAP

PROJECT NO:

FG5388

SURFACE R.L: -9.55

DRILLER

: CAIRNS DRILLING PTY LTD

JOB NO

DATUM

: AHD

DATE DRILLED : 17 - 18/3/05

DEPTH	DEFECT TYPE	DIP	PLANARITY	ROUGHNESS	APERTURE	WALL ALTERATION	OTHER
6.1-6.34	WS	10°	-	-	-	W	Parallel to BP
6.41	J	35°	St	R	С	Cn	_
6.45-6.46	WS	-	Ir	R	0	W	Parallel to LP
6.54-6.65	WS	-	4		0	W	-
6.75	10°≤	LP	Cu / Un	S	0	Cn	Parallel to LP
6.91	<5°	LP	P	S	O	Cn	-
7.08-7.15	BZ	-	-	-	0	Cn	
7.24	WS	10°	Pl	R	0	W	Parallel to LP
7.30-7.34	WS	_	Ir 、	R	0	W	-
7.45	LP	10°	P	S	С	Cn	17.14
7.81-7.70	BZ	-	-	-	0	Cn	-
7.80	LP	-	Un/P	S	С	Cn	-
7.87	LP	15°	P	R	0	Cn	
7.97	LP	15°	Ir / P	S	0	Cn	-
8.15-8.20	WS	-	-	-	0	W	Parallel to LP
8.24	LP	20°	P	R	С	Cn	_
8.49-8.45	WS	<10°	~	-	0	W	Parailei to LP
8,51-8.52	WS	-	-	-	0	W	Parallel to LP
8.73	LP	<5°	P	S	С	Cn	-
8.79	LP	<5°	P	S	С	Cn	
8.95	LP	35°	P	S	С	Cn	
9.03	LP	<10°	P	S	С	Cn	-
9.23	Fr	10°	Ir	R	С	Cn	-

Abbreviations

	ROUGHNESS		WALL ALTERATIONS	ļ	TYPE		OTHER
R	Rough	FeSt	Iron Stained	J	Joint	P	Partly
Sm	Smooth	W	Weathered	В	Bedding	CL	Carbonaceous lamination
SL	Slickensided	SM	Secondary Mineralisation	BP	Bedding Parting	Со	Coal seam
				FP	Foliation Parting	In	Incipient
	PLANARITY		APERTURE	LP	Lamination Parting	SI	Sand Infill
Pl	Planar	С	Closed	SZ	Sheared Zone	H	Horizontal
St	Stepped	0	Open	CZ	Crushed Zone	V	Vertical
Un	Undulating	F	Filled	ws	Weathered Seam	CI	Clay Infill
Cu	Curved	Т	Tight	BZ	Broken Zone	Cn	Clean
Ir	Irregular	i		HFZ	Highly Fractured Zone	CS	Clay Seam
				Fr	Fracture	Dí	Drilling Induced

Geotechnical Branch

35 Butterfield Street HERSTON Q 4006 Phone: (07) 38343035 Fax: (07) 38343011

DEFECT DESCRIPTIONS OF ENGINEERING BORELOGS

[CHARACTERISATION OF DEFECTS ARE IN ACCORDANCE WITH ISRM SUGGESTED METHODS (1981)]

BOREHOLE NO : BH13

: 2 of 6 SHEET

REFERENCE NO: H9562

PROJECT

GATEWAY UPGRADE PROJECT - GATEWAY BRIDGE DUPLICATION FOUNDATION

INVESTIGATION

PIER 6 - NORTHERN FACE OF THE PILE CAP LOCATION

PROJECT NO: FG5388 SURFACE R.L: -9.55 DRILLER : CAIRNS DRILLING PTY LTD

DATE DRILLED : 17 - 18/3/05 JOB NO **DATUM** AHD

DEPTH	DEFECT TYPE	DIP	PLANARITY	ROUGHNESS	APERTURE	WALL ALTERATION	OTHER
9.31	LP	10°	P	S	C	Cn	-
9.41	ВР	<15°	P	-	T	Cn	Co
9.57-9.59	WS	-		-	0	W	
9.63-9.72	WS/BZ	-	-	-	0	W	-
9.72 – 9.91							Core loss
9.91-10.22				BZ			
10.10	J	70°	P	-	С	Cn	<u>-</u>
10.27	WS	<10°	u u	R	0	Cn	Parallel to LP
10.36	LP	<10°	P	S	С	Cn	-
10.41-10.44	BZ	-	-	-	0	Cn	Parallel to LP
10.50-10.56	WS/BZ	-	_	-	0	W	Parallel to LP
10.61	LP	<10°	P	R	С	Cn	-
10.67-10.73	BZ	_	-	-	0	Cn	~
10.76-10.79	BZ/WS	-	-	-	0	Cn	Parallel to LP
10.91	BP/LP	<20°	Un	S	С	Cn	Co
11.05	LP	25°	P	-	T	Cn	, - ;
11.20	LP	25°	P	-	T	Cn	-
11.35	LP	25°	P	-	T	Cn	-
11.55-11.58	LP	10°	P	-		Cn	CS
11.60	LP	<10°	P	R	С	Cn	-
11.90	BP	<10°	P	-	T	Cn	Со
12.05	BP	<10°	P	-	Т	Cn	Со
12.10	LP	<10°	P	S	С	Cn	-

Abbreviations

			Avorev	uuuons					
	ROUGHNESS	,	WALL ALTERATIONS		TYPE	\top	OTHER		
R	Rough	FeSt	Iron Stained	J	Joint	P	Partly		
Sm	Smooth	w	Weathered	В	Bedding	CL	Carbonaceous lamination		
SL	Slickensided	SM	Secondary Mineralisation	BP	Bedding Parting	Co	Coal seam		
				FP	Foliation Parting	£n.	Incipient		
	PLANARITY		APERTURE	LP	Lamination Parting	SI	Sand Infill		
Pì	Planar	С	Closed	SZ	Sheared Zone	Н	Horizontal		
St	Stepped	0	Open	CZ	Crushed Zone	v	Vertical		
Un	Undulating	F	Filled	WS	Weathered Seam	Cĭ	Clay Infill		
Cu	Curved	Т	Tight	BZ	Broken Zone	Cn	Clean		
ľr	Irregular			HFZ	Highly Fractured Zone	CS	Clay Seam		
				Fr	Fracture	DI	Drilling Induced		

Geotechnical Branch

35 Butterfield Street HERSTON Q 4006 Phone: (07) 38343035 Fax: (07) 38343011

SHEET

BOREHOLE NO : BH13

REFERENCE NO: H9562

: 3 of 6

DEFECT DESCRIPTIONS OF ENGINEERING BORELOGS

[CHARACTERISATION OF DEFECTS ARE IN ACCORDANCE WITH ISRM SUGGESTED METHODS (1981)] GATEWAY UPGRADE PROJECT - GATEWAY BRIDGE DUPLICATION FOUNDATION

PROJECT INVESTIGATION

PIER 6 - NORTHERN FACE OF THE PILE CAP LOCATION

PROJECT NO: FG5388 SURFACE R.L: -9.55 DRILLER : CAIRNS DRILLING PTY LTD

DATUM AHD DATE DRILLED : 17 - 18/3/05 JOB NO

	11						
DEPTH	DEFECT TYPE	DIP	PLANARITY	ROUGHNESS	APERTURE	WALL ALTERATION	OTHER
12.22	J	30°	P	-	Т	Cn	-
12.25	J	50°	P	R	С	Cn	_
12.27	LP	15°	. P	S	С	Cn	-
12.30	J	50°	P	R	C	Cn	-
12.32	LP	<10°	P	-	С	Cn	-
12.42	LP	<5°	P	(21)	С	Cn	-
12.46	LP	<5°	St	-	С	Cn	-
12.50-13.10	Fr		Cu	R	0	Cn	-
13.30-13.38	BZ	-	~	R	0	Cn	Parallel to vertical Fr
13.38-13.43	ws	-	-		-	W	Parallel to LP & CI
13.5	J	75°	St	R	0	Cn	-
13.47	LP	15°	P	R	С	Cn	-
13.61	LP	<5°	P	S	С	Cn	-
13.68	LP	<5°	P	S	С	Cn	7.
13.71	LP	<5°	P	S	С	Cn	-
13.79	WS	<5°	-	R	0	W	Parallel to LP
13.90-13.92	ws	-	-	R	0	W	Parallel to LP
13.98-14.03	WS	1	-	T-11-	0	W	Parallel to LP
14.10-14.14	WS	-	-	-	0	W	Parallel to LP
14.25	J	85°	P	· R	С	Cn	-
14.67-14.74	BZ	_	-		0	-	CI

Appreviations

	ROUGHNESS		WALL ALTERATIONS		TYPE		OTHER
R	Rough	FeSt	Iron Stained	J	Joint	Р	Partly
Sm	Smooth	w	Weathered	В	Bedding	CL	Carbonaceous lamination
SL	Slickensided	SM	Secondary Mineralisation	BP	Bedding Parting	Co	Coal seam
		25111		FP	Foliation Parting	In	Incipient
	PLANARITY	<u> </u>	APERTURE	LP	Lamination Parting	SI	Sand Infill
PI.	Planar	С	Closed	SZ	Sheared Zone	Н	Horizonta)
St	Stepped	0	Open	CZ	Crushed Zone	V	Vertical
Un	Undulating	F	Filled	ws	Weathered Seam	CI	Clay Infill
Cu	Curved	Т	Tight	BZ	Broken Zone	Cn	Clean
Ir	Irregular			HFZ	Highly Fractured Zone	CS	Clay Seam
				Fr	Fracture	DI	Drilling Induced

Geotechnical Branch

35 Butterfield Street HERSTON Q 4006 Phone: (07) 38343035 Fax: (07) 38343011

DEFECT DESCRIPTIONS

[CHARACTER(SATION OF DEFECTS ARE IN ACCORDANCE WITH ISRM SUGGESTED METHODS (1981)]

BOREHOLE NO : BH13

SHEET : 4 of 6

REFERENCE NO: H9562

PROJECT

10

GATEWAY UPGRADE PROJECT - GATEWAY BRIDGE DUPLICATION FOUNDATION

INVESTIGATION

LOCATION

PIER 6 - NORTHERN FACE OF THE PILE CAP

PROJECT

FG5388

SURFACE R.L: -9.55

DRILLER

: CAIRNS DRILLING PTY LTD

JOB NO

DATUM

AHD

DATE DRILLED : 17 - 18/3/05

DEPTH	DEFECT TYPE	DIP	PLANARITY	ROUGHNESS	APERTURE	WALL ALTERATION	OTHER
15.15-15.17	WS	-	-		_	W	High plastic CS
15.27-15.31	WS	-	-		-	W	High plastic CS
15.35	LP	<5°	P	S	С	Cn	-
15.62-15.65	WS	_	-		0	W	Gravel up to 10mm
16.04	LP	-	P	S	C	Cn	DI
16.04	J	50°	P	S	С	Cn	-
17.30	LP	20°	P	R	С	Cn	DI
17.71	LP	20°	P	S	С	Cn	DI
19.33	LP	23°	P	R	С	Cn	DI
19.51	LP	35°	Un	S	С	Cn	DI
19.51-19.70	Fr	30°	Ir	R	С	Cn	Parallel to LP
19.60	J	85°	P	S	С	Cn	-
19.81	LP	30°	P	R	C	Cn	
19.89	LP	10°	P	S	С	Cn	-
19.95	J	85°	P	R.	T	Cn	?
19.95	J	40°	P	R	С	Cn	-
20.35	LP	30°	P	R	С	Cn	DI
20.40	LP	30°	P	S	C	Cn	DI
20.55-20.62	BZ	-	R	-	0	Cn	Со
21.30-21.34	BZ	1-			0	Cn	Co
22.24	LP	30°	Fr	L	0	Cn	Co

Abbreviations

	ROUGHNESS		WALL ALTERATIONS		TYPE	179	OTHER
R	Rough	FeSt	Iron Stained	J	Joint	P	Partly
Sm	Smooth	W	Weathered	В	Bedding	CL	Carbonaceous lamination
SL	Slickensided	SM	Secondary Mineralisation	BP	Bedding Parting	Со	Coal seam
				FP	Foliation Parting	In	Incipient
	PLANARITY		APERTURE	LP	Lamination Parting	SI	Sand Infill
Pl	Planar	С	Closed	SZ	Sheared Zone	Н	Horizontal
St	Stepped	0	Open	CZ	Crushed Zone	V	Vertical
Un	Undulating	F	Filled	WS	Weathered Seam	Cī	Clay Infill
Cu	Curved	т	Tight	BZ	Broken Zone	Cn	Clean
Ir	Irregular			HFZ	Highly Fractured Zone	CS	Clay Seam
				Fr	Fracture	DI	Drilling Induced

Geotechnical Branch

35 Butterfield Street HERSTON Q 4006 Phone: (07) 38343035 Fax: (07) 38343011

DEFECT DESCRIPTIONS OF ENGINEERING BORELOGS

[CHARACTERISATION OF DEFECTS ARE IN ACCORDANCE WITH ISRM SUGGESTED METHODS (1981)]

BOREHOLE NO : BH13

SHEET : 5 of 6

REFERENCE NO: H9562

PROJECT : GATEWA

GATEWAY UPGRADE PROJECT – GATEWAY BRIDGE DUPLICATION FOUNDATION

AHD

INVESTIGATION

LOCATION : PIER 6 - NORTHERN FACE OF THE PILE CAP

PROJECT NO: FG5388 SURFACE R.L: -9.55

DRILLER : CAIRNS DRILLING PTY LTD

JOB NO :

DATUM

1

DATE DRILLED : 17 - 18/3/05

DEPTH	DEFECT TYPE	DIP	PLANARYTY	ROUGHNES S	APERTURE	WALL ALTERATION	OTHER
22.41	LP	10°	P	S	С	Cn	-
23.05	J	85°	P	R	С	Cn	DI
23.28	LP	10°	P	R	C	Cn	DI
23.51	LP	20°	P	R	С	Cn	DI
23.65-23.71						_	CS (high plastic)
24.12-24.15							CS (high plastic)
24.30	LP	35°	D	S	C	Cn	
24.36	LP	35°	P	S	C	Cn	-
24.68	J	50°	Cu	R	C	Cn	DI
24.89	LP	30°	P	S	С	Cn	DI
25.0-25.12	BZ				С	Cn	Parallel to LF
25.50	J	60°	P	R	С	-	CI
25.97	Fr	Ir	-	R	С	C Cn	
26.25	J	60°	P	R	С	Cn	-
26.27	LP	20°	P	S	С	Cn	~
26.30-26.58	BZ			-	-	Cn	Parallel to LP
26.68	LP	30°	P	S	C	Cn	_
26.70	LP	30°	P	S	С	Cn	
26.88	LP	30°	P	S	C	Cn	/-
27.09	ĹP	-	-	-	-	Cm	DI
27.29	LP	30°	Ir	R.	С	Cn	DI
27.36	J	30°	P	-	T	Cn	DI

Abbreviations

			Abbrei	ranons				
ROUGHNESS			WALL ALTERATIONS		ТҮРЕ		OTHER	
R	Rough	FeSt	Iron Stained	y	LJoint	Þ	Partly	
Sm	Smooth	W	Weathered	В	Bedding	CL	Carbonaceous lamination	
SL	Slickensided	SM	Secondary Mineralisation	BP	Bedding Parting	Co	Coal seam	
				FP	Foliation Parting	In	Incipient	
	PLANARITY APERTURE		APERTURE	LP	Lamination Parting	SI	Sand Infill	
Ρl	Planar	С	Closed	SZ	Sheared Zone	Н	Horizontal	
St	Stepped	0	Open	CZ	Crushed Zone	V	Vertical	
Un	Undulating	F	Filled	WS	Weathered Seam .	CI	Clay Infill	
Cu	Curved	Т	Tight	BZ	Broken Zone	Cn	Clean	
[t	hregular			HFZ	Highly Fractured Zone	CS	Clay Seam	
				Fr	Fracture	DI	Drilling Induced	

NOTE: This sheet should be read in conjunction with appropriate Engineering Borelog. Defect angles were measured with respect to horizontal plane.

F:GEOT533/4

Geotechnical Branch

35 Butterfield Street HERSTON Q 4006 Phone: (07) 38343035 Fax: (07) 38343011

DEFECT DESCRIPTIONS OF ENGINEERING BORELOGS

[CHARACTERISATION OF DEFECTS ARE IN ACCORDANCE WITH ISRM SUGGESTED METHODS (1981)]

BOREHOLE NO : 13

SHEET 6 of 6

REFERENCE NO: H9562

PROJECT

GATEWAY UPGRADE PROJECT - GATEWAY BRIDGE DUPLICATION FOUNDATION

INVESTIGATION

LOCATION

PIER 6 - NORTHERN FACE OF THE PILE CAP

PROJECT NO:

FG5388

SURFACE R.L: -9.55

DRILLER

: CAIRNS DRILLING PTY LTD

JOB NO

DATUM

AHD

DATE DRILLED

: 17 - 18/3/05

DEPTH	DEFECT TYPE	DIP	PLANARITY	ROUGHNESS	APERTURE	WALL ALTERATION	OTHER
27.41	J	30°	P	-	Т	Cn	DI
27,50	LP	30°	P	S	С	Cn	DI
27.88	J	45°	St	R	С	Cn	-
28.27	J	15°	Cu	R	С	Cn	DI
28.37	J	40°	Ir	R	C	Cn	-
28.39	J	70°	Р	S	С	Cn	12
28.80	LP	35°	P	R	С	Cn	æ
28.45-28.75	FZ/BZ	-	<u> </u>	-	O	Cn	P SI
29.12	LP	20°	Р	S	C	Cn	DI
29.36	LP	25°	P	S	C-T		DI
29.55-29.80	FZ	20°	-	-	0	Cn	Parallel to LP
29.94-30.40	FZ	-	-	-	O	Cn	Parallel to LP
30.81	LP	<10°	Р	R	С	Cn	DI
31.61	LP	20°	P	S	С	Cn	DI
31.70	LP	20°	P	S	С	Cn	-
31.71-31.91	BZ	_	-	R	С	Cn	Parallel to LP
32.10-32.22	BZ	-	-	-	0	Cn	Parallel to LP
32.48	LP	10°	-	-	С	Cn	DI
32.65	LP	10°	-	-	С	Cn	DI
33.34-33.36	BZ	75°	Р	R	О	Cn	Parallel to J
33.62	J	75°	P	S	С	Cn	-
33.72	J	70°	P	S	С	Cn	-
34.22	J	<10°	Р	S	С	Cn	DI

Abbreviations

	ROUGHNESS		WALL ALTERATIONS	14110713	TYPE		OTHER	
R	Rough	FeSt	Iron Stained	J	Joint	P	Partly	
Sm	Smooth	W	Weathered	В	Bedding	CL	Carbonaceous lamination	
SL	Slickensided	SM	Secondary Mineralisation	BP	Bedding Parting	Со	Coal seam	
				FP	Foliation Parting	In	Incipient	
	PLANARITY APERTURE		APERTURE	LP	Lamination Parting	SI	Sand Infill	
Pl	Planar	С	Closed	SZ	Sheared Zone	Н	Horizontal	
St	Stepped	0	Open	CZ	Crushed Zone	V	Vertical	
Un	Undulating	F	Filled	WS	Weathered Seam	CI	Clay Infill	
Си	Curved	т	Tight	BZ	Broken Zone	Cn	Clean	
ŀr	Irregular			HFZ	Highly Fractured Zone	CS	Clay Seam	
				Fr	Fracture	DI	Drilling Induced	