COPYRIGHT NOTICE

This geotechnical log and its associated data (the Document) is licensed by the Queensland Department of Transport and Main Roads under the <u>Creative Commons Attribution 4.0 Licence</u> (CC BY 4.0). When reusing the Document, in whole or in part, please attribute the Department as follows: "(c) State of Queensland (Department of Transport and Main Roads) 2020, licensed under the CC BY 4.0 Licence". This licence does not apply to the Queensland Government logo or trademarks.

LIMITATION OF LIABILITY

The CC BY 4.0 Licence contains a comprehensive Disclaimer of Warranties and Limitation of Liability. In addition, please note that this Document was prepared for Departmental use only. Reuse of the Document by anyone for any other purpose could result in error and/or loss. You should obtain professional advice before making decisions based on the contents of the Document.

When reproducing any part of this Document, you must also reproduce this limitation of liability notice in addition to the italicised attribution statement above.

Retrieved from the Queensland Geotechnical Database http://qgd.org.au/

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/2-2004

BOREHOLE No	BH17
SHEET	1 of14
REFERENCE No	H9566

	DJECT				RADE PROJECT - GATEWAY BRIDGE DU				A <u>TION IN/</u>	/ <u>ES]</u>	TIGATION	
	CATION				E OF PILE CAP						OORD(NATES 10209.3 E; 167940.6 N	<u> </u>
	DJECT No	_F <u>G</u> 5 <u>:</u>	38 <u>8</u>					ATE START				
JOE	3 No				DATUM AHD		DAT	E COMPLET	ED <u>13/05</u>	<u>/05</u>	DRILLER CAIRNS DRIL	TING _
O DEPTH (m)	R.L. (m)	CASING WASH BORING CORE DRILLING	RQD ()% CORE REC%	SAMPLE	MATERIAL DESCRIPTION	LITHOLOGY	USC	ボスエミンジボ STRENGTH ボスエミンジボ	DEFECT SPACING (mm)	GRAPHIC LOG	ADDITIONAL DATA AND TEST RESULTS	SAMPLES
BOREHOLE WITH LITHOLOGY MEERA PIER 7 BOREHOLES-GATEWAY BRIDGE - GATEWAY UPGRADE PROJECT GPJ ENGINEERING BOREHOLE 09_04.GDT 31/08/05	-2.18	CORE C	CORE REC %		ESTUARINE SILTY CLAY Dark grey to black, moist to mainly wet, very soft to soft. High plasticity, minor amout of partly decomposed plant materials; some shell fragments.		USC WEATHE WEATHE	H3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	- 20 - 500 -	GRAPHIC		SAMPLES
	-7.18	COL									RW,- N<1	SPT

REMARKS SPT N values in gravel can overestimate density due to influence of coarser size gravel particles. This borelog should be read in conjunction with the appropriate Defect Description Sheets. Defect angles were measured with respect to a horizontal plane.

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/2-2004

BOREHOLE No	BH17
SHEET	_ <u>2</u> _ of1 <u>4</u> _
REFERENCE No.	H9566

GATEWAY UPGRADE PROJECT - GATEWAY BRIDGE DUPLICATION FOUNDATION INVESTIGATION PROJECT LOCATION PIER 7 - CENTRE OF PILE CAP COORDINATES 10209.3 E; 167940.6 N PROJECT No <u>FG5388</u> ____ SURFACE R.L. __-2.18 ___ DATE STARTED _08/05/05 DATUM SETP JOB No DATUM _AHD __. DATE COMPLETED _13/05/05 DRILLER CAIRNS DRILLING RQD INTACT DEFECT CASING WASH BORING CORE DRILLING (m) ()% STRENGTH SPACING ADDITIONAL DATA DEPTH (m) MATERIAL AND SAMPLE DESCRIPTION SAMPL CORE TESTS 888888 미수구조ェ<u>수</u>퍼 중8 TEST RESULTS REC % 5 -7.18 11111 **ESTUARINE SILTY CLAY** (As above). Very high amout of partly decomposed plant materials at 6.0m; becoming slightly sandy with depth. BOREHOLE WITH LITHOLOGY MEERA PIER 7 BOREHOLES-GATEWAY BRIDGE - GATEWAY UPGRADE PROJECT.GPJ ENGINEERING BOREHOLE 99_04,GDT 31/08/05 ОН RW.-. SPT -9.18 ESTUARINE SILTY SAND / SAND Dark grey, wet, very loose to loose. Very fine grained silty sand becoming sand with depth. RW. SPT N<1 SC SM SPT RW,-,-

REMARKS 3PT N values in gravel care overestimate density due to influence of coarser size gravel particles. This borelog should be read in conjunction with the appropriate Defect Description Sheets. Defect angles were measured with respect to a

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/2-2004

BOREHOLE No	BH17
SHEET	_ <u>3</u> _ of _ <u>14</u> _
REFERENCE No	<u>H9566</u>

				RADE PROJECT - GATEWAY BRIDGE DUI	PLIC!	<u>ATIC</u>	N FOUNDA	TIŌN IN		_	
	ATION <u>PIE</u> JECT No <u>FG</u>			E OF PILE CAP						OORDINATES 10209.3 E; 167940.6 N	<u> </u>
JOB		<u> </u>					ATE START				
000				DATUM <u>AHD</u> .	_	DAT	E COMPLETI	ED _13/05	<u> 705</u>	DRILLER <u>CAIRNS DRIL</u>	<u>LING</u> _
DEPTH (m)	R.L. (m) System Core Drilling Core Drilling	RQD ()%	SAMPLE	MATERIAL DESCRIPTION	LITHOLOGY	CEATHERING	INTACT STRENGTH	(mm)	GRAPHIC LOG	ADDITIONAL DATA AND TEST RESULTS	SAMPLES
10	-12.18 3≩8	REC %	S,	ALLED HALL CHECK OF AV	5	S	다 다 무숙포르기속력	TTTTT VQQQQQ	8	TEST NESSETS	SAN
-				ALLUVIAL SILTY CLAY Pale green grey to grey brown, moist, stiff becoming firm with depth.				_			-
-				Medium to high plasticity; exhibits some fissuring and cubic structures with excessive drying; some incipient lateritic			- - - -	· ·			
-				features.						1,5,8	SPT
							.	-		N=13	
11											1
								. :			
							· ; - - ; -	-	ı		-
								. !!			-
12							· -	-			
1000							: 1			4,6,7 N=13	SPT
						CI- CH	- 	- -			
											1
5 - 13							1	-			-
2							-	. :			-
100						l		- -			-
							. : 	-		124	
							.]			1,2,4 N=6	SPT
- 14								-			
1 1								-			-
WIN LINGLOOM							. :-				-
⊢ I]
15	-17,18							- : .			-
RI	EMARKS SP	Γ N values	in ar	ave) can overestimate density due to influence of o	nareo	- 6170	arayal partial	oo Thio h	rolog	r should LOCGED BY	

SPT N values in gravel can overestimate density due to influence of coarser size gravel particles. This borelog should be read in conjunction with the appropriate Defect Description Sheets. Defect angles were measured with respect to a horizontal plane.

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/2-2004

BOREHOLE No	BH17
SHEET	_4_ of _14_
REFERENCE No	H9566

PROJECT	GATEWAY UPO	RADE PROJECT - GATEWAY BRIDGE DI	JPLICATION FOUNDATION INVESTIG	ATION
	PIER 7 - CENTE	RE OF PILE CAP	coor	RDINATES 10209.3 E; 167940.6 N
PROJECT N	o_F <u>G5388</u>	SURFACE R.L2.18	DATE STARTED <u>08/05/05</u>	DATUM SETP
JOB No		DATUM <u>AHD</u>	DATE COMPLETED 13/05/05	DRILLER CAIRNS DRILLING
(iii) HLdag (m) HLdag (m) 15 -17.18	CASING CA	MATERIAL DESCRIPTION	LITHOLOGY USE CHAPTER AND CHAP	SAMPLES SAMPLES STATESTS
	:	ALLUVIAL SILTY CLAY (As above).		2,3,6 N=9
20 - 16 - 16 - 16 - 16 - 16 - 16 - 16 - 1				-
17			CL-	1,3,4 N=7
18				RW,3,3 N=5
19				1,2,4 N=6 SPT
20 -22.18				14-0

REMARKS SPT N values in gravel can overestimate density due to influence of coarser size gravel particles. This borelog should be read in conjunction with the appropriate Defect Description Sheets. Defect angles were measured with respect to a horizontal plane.

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/2-2004

BOREHOLE No	BH17
SHEET	_ <u>5</u> of1 <u>4</u>
REFERENCE No	H9566

	JECT				RADE PROJECT - GATEWAY BRIDGE DUE	LIC	ATIC	N FOUNDA	YTION IN			
					E OF_PILE CAP						OORDINATES 10209.3 E; 167940.6 N	
JOB					DATUM AUD			ATE STARTI E COMPLETI				
							יאס			<u> </u>	DRILLER <u>CAIRNS DRILL</u>	-IING .
(⊋	R L. (m)	2 2 2 2 2	RQD ()%		MATERIA		၂၀	INTACT STRENGTH	DEFECT SPACING	ပ္	ADDITIONAL DATA	
DEPTH (m)		BORIL DRILL		ا پ	MATERIAL	9	I RES	STRENGTH	(mm)	50 LOG	AND	S
		ASIN ASH ORE	CORE	SAMPLE	DESCRIPTION	LITHOLOGY	S 및	ᇎᇎᅩᄝᆢᅥᆿᆏ	2000	GRAPHIC	TEST RESULTS	SAMPLES
20	-22.18	0\$0	REC %	Ŋ	ALLUVIAL SILTY CLAY	Ξ	ĭ ≥		. _ _	ত		S E
					(As above).							
20 CARENCIE WITH LINGUIST WEEK PIECE WITH LINGUIST WAS A STANDARD WEEK PIECE WITH LINGUIST WAS A STANDARD WEEK PIECE WAS A STANDARD WEEK PIECE WAS A STANDARD WAS A STANDAR							CI-	:	- -			-
								· · · · · ·	- : : : : : : : : : : : : : : : : : : :			-
- 22	-24.18											
20.					ALLUVIAL SILTY SAND / SAND Pale brown to brown, moist to mainly wet, medium dense.			.: -	- :			-
					Fine grained sifty sand becoming sand with depth.			:	- · ·			
											2,6,9 N=15	SPT
-23									- - - :			LEVE
								:: -				
								; · .]				
<u>}</u> -			1				CI- CH	-				
											9	
<u> </u>												
- 24												
Ş - 24								-	- -			
									:		5,7,9 N=16	SPT
								- :			N=16	
-									· -			101-1
E .		30						-				
	-27.18						1		: .			
		ODT.			avelican overestimate density due to influence of co	1//			es This be	<u>_</u> _	V chould LOCOTO BY	a lite

SPT N values in gravel can overestimate density due to influence of coarser size gravel particles. This borelog should be read in conjunction with the appropriate Defect Description Sheets. Defect angles were measured with respect to a horizontal plane.

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/2-2004

PROJECT GATEWAY UPGRADE PROJECT - GATEWAY BRIDGE DUPLICATION FOUNDATION INVESTIGATION PIER 7 - CENTRE OF PILE CAP LOCATION COORDINATES 10209.3 E; 167940.6 N PROJECT No FG5388 SURFACE R.L. _-2.18 __ DATE STARTED 08/05/05 DATUM SETP_____ DATUM _AHD __ JOB No DATE COMPLETED 13/05/05 DRILLER CAIRNS DRILLING RΙ ROD INTACT DEFECT ()% ADDITIONAL DATA STRENGTH SPACING DEPTH (m) MATERIAL (mm) AND SAMPLE SAMPLES DESCRIPTION CORE TEST RESULTS REC % -27.18 ALLUVIAL SAND AND GRAVEL Pale brown to pale grey brown, wet, medium dense becoming dense with 7.11.13 SPT depth Poorly sorted coarse sand and gravel sizing up to 40mm; subrounded to subangular lithic and quartzitic fragments; minor silt fraction. Gravel size increases with depth. 31/08/05 ENGINEERING BOREHOLE 09 04.GDT SM-MEERA PIER 7 BOREHOLES-GATEWAY BRIDGE - GATEWAY UPGRADE PROJECT.GPJ 16.27.30/50 N>50 SPT N>50 -30.38 LOW GRADE COAL FINE GRAINED MAINLY DULL TO SLIGHTLY VITREOUS THINLY -30.68 LAMINATED FRAGILE (17) CARBONACEOUS SEDIMENTARY ROCK Drillers record only. HW (?): ls(50)=0.13 MPa MW : Black mainly dull to occasionally !s(50)=0.04 MPa vitreous, fine grained, thinly laminated, mainly low to medium strength. - 29 Highly fractured, weathered and altered seams throughout; frequent sittstone interbeds. BOREHOLE WITH LITHOLOGY MINA Is(50)=0.68 MPa Defects - Numerous lamination/bedding partings<**deg - Fractured, weathered & altered seams<** (55)

REMARKS SPT N values in gravel can overestimate density due to influence of coarser size gravel particles. This borelog should

31/08/05

ENGINEERING BOREHOLE 09_04.GDT

MEERA PIER 7 BOREHOLES-GATEWAY BRIDGE - GATEWAY UPGRADE PROJECT.GPJ

horizontal plane.

ENGINEERING BOREHOLE

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/2-2004

BOREHOLE No BH17 SHEET __7__ of __14__ H9566 REFERENCE No

PROJECT GATEWAY UPGRADE PROJECT - GATEWAY BRIDGE DUPLICATION FOUNDATION INVESTIGATION PIER 7 - CENTRE OF PILE CAP LOCATION 10209.3 E; 167940.6 N COORDINATES PROJECT No FG5388 SURFACE R.L. _-2.18 __. DATE STARTED _08/05/05 DATUM SETP ____ JOB No DATUM _AHD ___ DATE COMPLETED 13/05/05 DRILLER CAIRNS DRILLING R.L ROD INTACT DEFECT BORING DRILLING (m) ()% SPACING ADDITIONAL DATA STRENGTH DEPTH (m) 8 MATERIAL (mm) AND SAMPLE DESCRIPTION SAMPLES TESTS CORE TEST RESULTS REC % 30 -32.18 LOW GRADE COAL MW: (As above) ls(50)=0.09 MPa ls(50)=0.03 MPa ls(50)=0.02 MPa 0 Is(50)=0.20 MPa ls(50)=0.28 MPa ls(50)=0.48 MPa 0 Is(50)=0.12 MPa (s(50)=0.26 MPa 0 Is(50)=0.06 MPa Is(50)=0.09 MPa o ls(50)=0.25 MPa ls(50)=0.11 MPa X O Coreloss MW ls(50)=0.09 MPa Is(50)=0.19 MPa 0 (s(50)=0.06 MPa ls(50)=0.12 MPa O BOREHOLE WITH LITHOLOGY (70) ls(50)=0.65 MPa 0 -37.18 REMARKS SPT N values in gravel can overestimate density due to influence of coarser size gravel particles. This borelog should LOGGED BY A. DISSANAYAKE (DISS)

(c) State of Queensland (Department of Transport and Main Roads) 2020, CC BY 4.0. Please note copyright and limitation of liability notices on attached cover page.

be read in conjunction with the appropriate Defect Description Sheets. Defect angles were measured with respect to a

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/2-2004

BOREHOLE No __BH17__ SHEET _ 8 _ of _ 14 _ __H9566__ REFERENCE No

GATEWAY UPGRADE PROJECT - GATEWAY BRIDGE DUPLICATION FOUNDATION INVESTIGATION PROJECT LOCATION PIER 7 - CENTRE OF PILE CAP COORDINATES 10209.3 E; 167940.6 N

PROJECT No <u>FG</u> 5	<u> </u>	SURFACE R.L2,18	DATE STARTED 8/5/05 DATUM SETP	
JOB No		DATUM <u>AHD</u> .	DATE COMPLETED 13/5/05 DRILLER CAIRNS DE	
8.T. (m) (m) (MASSH BORING ONE DRILLING	RQD ()%	MATERIAL DESCRIPTION	INTACT DEFECT STRENGTH SPACING O (mm) O O O O O O O O O O O O O O O O O O	SAMPLES
		SANDY SILTSTONE SW: Pale grey to white, fine grained, thinly laminated, mainly medium to high strength. Defects: Generally rare. Occasional drilling induced lamination partings <10° (1-2/0.5m)	Is(50)=0.15 MPa Is(50)=0.55 MPa Is(50)=0.55 MPa	9 X
-37.83		LOW GRADE COAL FINE GRAINED MAINLY DULL TO SLIGHTLY VITREOUS THINLY LAMINATED FRAGILE CARBONACEOUS SEDIMENTARY ROCK MW: Black mainly dull to occasionally vitreous, fine grained, thinly laminated,	Is(50)=1.75 MP ₈	a x
-38 -40.33 -41.06 -39 -42.08 40 -42.18	100 (72)	mainly low to medium strength with high strength sandstone interbeds. Highly fractured, weathered and altered seams throughout. Defects: Numerous lamination/bedding partings <15° Fractured, weathered & altered seams <200mm	XW Siltstone interbed. Coreloss	
-39.26		SILTY SANDSTONE SW: Pale grey to white, fine to medium grained, laminated, medium to high strength. Defects: Generally rare.	Is(50)=0.27 MPa	İ
		position : earlierany raise.	Is(50)=1.47 MPε	0
38			Is(50)=0.50 MPa Is(50)=1.06 MPa	
-40.33		LOW GRADE COAL FINE GRAINED MAINLY DULL TO SLIGHTLY VITREOUS THINLY LAMINATED FRAGILE CARBONACEOUS SEDIMENTARY	Is(50)=0.80 MPa Is(50)=0.09 MPa	L .
-41.06	97	ROCK MW: Black mainly dull to occasionally vitreous, fine grained, thinly laminated, mainly low to medium strength.	Is(50)=0.41 MPa Is(50)=0.03 MPa	
-39	(93)	SANDY SILTSTONE SW: Pale grey to white, fine to medium, laminated, medium to mainly high strength. Defects: Nil	Is(50)=1.23 MPa Is(50)=0.83 MPa	a o
-			Pressuremeter Is(50)=0.88 MPa × × × SW Is(50)=1.51 MPa V × V V V V V V V V V V V V V V V V V V	0
			UCS=27MPa Is(50)=0.84 MPa MC=2.70% Is(50)=1.52 MPa WD=2510N/m²	a ×
-42.08 40 -42.18		see next page	UCS=29MPa	
	100	gravel can overgetimate density due to influence of a		

REMARKS SPT N values in gravel can overestimate density due to influence of coarser size gravel particles. This borelog should be read in conjunction with the appropriate Defect Description Sheets. Defect angles were measured with respect to a

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/2-2004

BOREHOLE No <u>BH17</u>

SHEET <u>9 of 14</u>

REFERENCE No <u>H9566</u>

GATEWAY UPGRADE PROJECT - GATEWAY BRIDGE DUPLICATION FOUNDATION INVESTIGATION PROJECT PIER 7 - CENTRE OF PILE CAP LOCATION COORDINATES 10209.3 E; 167940.6 N PROJECT No FG5388 _ _ _ SURFACE R.L. __-2.18 ___ DATE STARTED 8/5/05 DATUM SETP _____ DATUM _AHD __ JOB No DATE COMPLETED _13/5/05_ DRILLER CAIRNS DRILLING R.L ROD INTACT DEFECT ()% STRENGTH SPACING ADDITIONAL DATA $\widehat{\mathbf{E}}$ MATERIAL (mm) DEPTH AND SAMPLE DESCRIPTION TESTS CORE 2808 EYLXTYE TEST RESULTS REC % 40 INTERBEDDED SANDSTONE & ls(50)=1.28 MPa 0 SILTSTONE. SANDSTONE DOMINANT Is(50)=0.70 MPa SW: Pale grey to grey, fine grained, thinly Pressuremeter ls(50)=0.39 MPa laminated, medium to high strength. Test 6 @ 40.2m Is(50)=1.96 MPa 0 Defects: Generally rare. Occasional drilling induced lamination partings <10° - 35° (1/m) ls(50)=0.41 MPa Is(50)=1.14 MPa 0 ls(50)=0.66 MPa ls(50)=1.11 MPa 0 31/8/05 - 41 ENGINEERING BOREHOLE 09_04.GDT ls(50)=3.63 MPa Is(50)=5.32 MPa Is(50)=3.93 MPa Is(50)=1.66 MPa 0 0 X X SW Is(50)=1.85 MPa Is(50)=2.80 MPa 0 (s(50)=0.84 MPa 0 ls(50)=0.25 MPa х Is(50)=1.03 MPa х ls(50)=3.09 MPa 0 (94)BRIDGE - GATEWAY UPGRADE PROJECT.GPJ UCS=33MPa -44.78 MC=3.88% INTERBEDDED SANDSTONE & MUDSTONE. SANDSTONE DOMINANT ls(50)=0.24 MPa SW: Pale grey to dark grey, fine grained, (s(50)=1.08 MPa 0 thinly laminated and interbedded, medium Pressuremeter to high strength. Is(50)=0.88 MPa 0 Test 5 @ 42.9m ls(50)=0.39 MPa SW Defects: Generally rare. Is(50)=0.36 MPa х Occasional drilling induced lamination (s(50)=1.05 MPa MEERA PIER 7 BOREHOLES-GATEWAY partings <10°(1/m) 0 -45.68 SANDSTONE FINE TO MEDIUM GRAINED, LAMINATED TO MASSIVE SEDIMENTARY ROCK SW: Grey to white grey, laminated to massive, medium to mainly high strength. Defects: Generally rare. Occasional drilling induced lamination partings <10° (1/2m). Is(50)=0.87 MPa Is(50)=0.45 MPa Pressuremeter X BOREHOLE WITH LITHOLOGY SW Test 4 @44.2m Occasional coal seams <40mm. ls(50)=0.56 MPa ls(50)=0.91 MPa UCS=40MPa 0 MC=3.50% WD=2510N/m2 Is(50)=0.31 MPa х ls(50)=0.57 MPa 0 ls(50)=0.15 MPa (98) ls(50)=1.34 MPa

REMARKS SPT N values in gravel can overestimate density due to influence of coarser size gravel pavicles. This borelog should be read in conjunction with the appropriate Defect Description Sheets. Defect angles were measured with respect to a

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/2-2004

BOREHOLE No <u>BH17</u>

SHEET <u>10</u> of <u>14</u>

REFERENCE No **H9566**

GATEWAY UPGRADE PROJECT - GATEWAY BRIDGE DUPLICATION FOUNDATION INVESTIGATION **PROJECT** PIER 7 - CENTRE OF PILE CAP LOCATION COORDINATES 10209.3 E; 167940.6 N PROJECT No <u>FG5388</u> _ _ _ SURFACE R.L. __-2.18 __. DATE STARTED 8/5/05 DATUM SETP _____ JOB No DATE COMPLETED 13/5/05 DATUM AHD DRILLER CAIRNS DRILLING R.L ROD INTACT DEFECT (m)()% STRENGTH SPACING ADDITIONAL DATA DEPTH (m) MATERIAL (mm) AND GRAPHIC SAMPLES DESCRIPTION CASIN(WASH CORE SAMPL TESTS CORE TEST RESULTS REC % -47.18 45 SANDSTONE SW :(As above) SW ls(50)=1.47 MPa Is(50)=4.47 MPa Is(50)=2.42 MPa Is(50)=3.46 MPa 0 46 04.GDT Is(50)=0.88 MPa ls(50)=1.89 MPa -48.45 0 ENGINEERING BOREHOLE 09_ Is(50)=2.76 MPa MUDSTONE Is(50)=2.69 MPa 0 FINE GRAINED THINLY LAMINATED SEDIMENTARY ROCK Pressuremeter Is(50)=0.42 MPa SW: Dark grey to black, fine grained, thinly Test 3 @ 46.5m Is(50)=1.84 MPa 0 laminated, medium to mainly high strength UCS≃51MPa with some very high strength areas. MC=2.87% Is(50)=3.37 MPa Is(50)=0.54 MPa Is(50)=0.73 MPa 0 WD=2500N/m² Defects: Generally rare. Occasional drilling induced lamination SW ls(50)=3.31 MPa 0 47 partings <10° (1/1.5m) ls(50)=1.46 MPa ls(50)=3.83 MPa GATEWAY UPGRADE PROJECT.GPJ - Joints @ 60°-70° (1/1.5m) UCS=59MPa 0 MC=2.64% WD=2530N/m² ls(50)=3.62 MPa Pressuremeter Is(50)=0.85 MPa 0 Test 2 @ 47.3m ls(50)=0.07 MPa 49.72 Is(50)=0.50 MPa 0 INTERBEDDED MUDSTONE AND SANDSTONE (SHEARED). SANDSTONE DOMINANT HW -MW rock HW. HW -MW : Pale grey to black, fine grained, MW thinly laminated and interbedded, very low 100 (49) to medium with some high strength bands. 48 BOREHOLES-GATEWAY BRIDGE Faulted, contorted and sheared throughout SW with some clayey and rehealed zones. Rockmass appears to be erodable in most places. ΜW MEERA PIER 7 -51.18 49 Is(50)=0.65 MPa SANDSTONE (s(50)=0.96 MPa FINE TO MEDIUM GRAINED, LAMINATED TO MASSIVE ls(50)=0.44 MPa ls(50)=0.49 MPa WITH LITHOLOGY SEDIMENTARY ROCK SW ٥ Pressuremeter XW-SW: Grey to white grey, fine grained, ls(50)=0.78 MPa х Test 1 @ 49.3m laminated, mainly medium to high strength ls(50)=0.83 MPa 0 becoming low to medium strength with UCS=34MPa Is(50)=0.46 MPa х depth. MC=4.24% Is(50)=1.25 MPa 0 Defects: Generally rare. WD=2530N/m2 ls(50)=0.54 MPa MW Stiff clay (?) BOREHOLE Occasional drilling induced lamination -51.98 partings <10° (1/m). A weathered clayey seam <300mm SW See below. -52.18 REMARKS SPT N values in gravel can overestimate density due to influence of coarser size gravel particles. This borelog should LOGGED BY

SPT N values in gravel can overestimate density due to influence of coarser size gravel particles. This borelog should be read in conjunction with the appropriate Defect Description Sheets. Defect angles were measured with respect to a horizontal plane.

A. DISSANAYAKE (DISS)

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/2-2004

BOREHOLE No	BH17
SHEET	_ <u>11</u> _ of _ <u>14</u> _
REFERENCE No	H9566

PROJECT. GATEWAY UPGRADE PROJECT - GATEWAY BRIDGE DUPLICATION FOUNDATION INVESTIGATION PIER 7 - CENTRE OF PILE CAP LOCATION COORDINATES 10209.3 E; 167940.6 N PROJECT No FG5388 SURFACE R.L. _ -2.18 __ DATE STARTED _08/05/05 DATUM SETP JOB No DATUM __AHD __. DATE COMPLETED _13/05/05 DRILLER CAIRNS DRILLING R.L RQD INTACT DEFECT ING SH BORING SE DRILLING ()% MEATH REALING (mm) SPACING SOSS STRENGTH SPACING ADDITIONAL DATA (E) MATERIAL DEPTH AND SAMPLES DESCRIPTION CORE TEST RESULTS REC % 50 -52.18 INTERBEDDED MUDSTONE AND SANDSTONE (SHEARED). MUDSTONE DOMINANT SW: Pale grey to black, fine grained, thinly laminated and interbedded, medium to mainly high strength. Faulted, sheared and healed area with occasional calcite veins especialy below (37)SW Defects: Lamination partings <15 °(3-4//m) Weathered seams <**mm ENGINEERING BOREHOLE 09_04.GDT Stiff clay (?) -53.63 MUDSTONE FINE GRAINED THINLY LAMINATED SEDIMENTARY ROCK HW - SW : Dark grey to black, fine grained, thinly laminated medium to high strength with very low to medium strength brecciated zones. BOREHOLE WITH LITHOLOGY MEERA PIER 7 BOREHOLES-GATEWAY BRIDGE - GATEWAY UPGRADE PROJECT.GPJ Highly fractured throughout with some clay infilled brecciated zones. Defects: Fractured and brecciated zones<**mm.
 Mutidirectional joints @ ********. - Frequent brecciated zones<**mm. SW Is(50)=1.15 MPa 0 Is(50)=0.85 MPa 0 ls(50)=0.52 MPa 100 (24) Is(50)=0.05 MPa 0 ls(50)=0.03 MPa Is(50)=0.02 MPa HW Brecciated zone MW

REMARKS SPT N values in gravel car overestimate density due to influence of coarser size gravel particles. This borelog should be read in conjunction with the appropriate Defect Description Sheets. Defect angles were measured with respect to a horizontal plane.

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/2-2004

BOREHOLE No	BH17
SHEET	_12 of _14 _
REFERENCE No	H9566

PROJECT GATEWAY UPGRADE PROJECT - GATEWAY BRIDGE DUPLICATION FOUNDATION INVESTIGATION PIER 7 - CENTRE OF PILE CAP LOCATION COORDINATES 10209.3 E; 167940.6 N PROJECT No_FG5388 SURFACE R.L. __-2.18 __. DATE STARTED 08/05/05 DATUM SETP _ _ _ JOB No DATUM AHD DATE COMPLETED _13/05/05 DRILLER CAIRNS DRILLING RL. RQD INTACT DEFECT CASING WASH BORING CORE DRILLING (m) ()% ADDITIONAL DATA STRENGTH SPACING 90 DEPTH (m) MATERIAL (mm) GNA SAMPLE SAMPLES DESCRIPTION TESTS CORE TEST RESULTS 55 -57.18 REC % MUDSTONE HW - SW: (As above). HW Brecciated zone BOREHOLE WITH LITHOLOGY MEERA PIER 7 BOREHOLES-GATEWAY BRIDGE - GATEWAY UPGRADE PROJECT.GPJ ENGINEERING BOREHOLE 09_04,GDT 31/08/05 (42)HW Brecciated zone ls(50)=0.26 MPa SW Is(50)=0.08 MPa o Is(50)=0.44 MPa Brecciated zone нw ls(50)=0.47 MPa SW ls(50)=0.49 MPa o Is(50)=0.46 MPa Is(50)=0.02 MPa 0 Brecciated zone MW Brecciated zone (38)SW Brecciated zone HW MW SW

REMARKS SPT N values in gravei car; overestimate density due to influence of coarser size gravel particles. This borelog should be read in conjunction with the appropriate Defect Description Sheets. Defect angles were measured with respect to a

horizontal plane.

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/2-2004 BOREHOLE No BH17 SHEET 13 of 14 REFERENCE No H9566

GATEWAY UPGRADE PROJECT - GATEWAY BRIDGE DUPLICATION FOUNDATION INVESTIGATION **PROJECT** PIER 7 - CENTRE OF PILE CAP LOCATION COORDINATES 10209.3 E; 167940.6 N SURFACE R.L. _-2.18 __. PROJECT No_FG5388 ____ DATE STARTED _08/05/05 DATUM SETP JOB No DATUM _AHD ___ DATE COMPLETED 13/05/05 DRILLER CAIRNS DRILLING R.I. RQD INTACT DEFECT ()% ADDITIONAL DATA STRENGTH SPACING ε 200 MATERIAL DEPTH AND GRAPHIC SAMPLE SAMPLES DESCRIPTION CASIN WASH CORE CORE USC WEAT TEST RESULTS REC % 60 -62.18 MUDSTONE SW HW - SW: (As above). НΜ Brecciated zone MW ls(50)=0.41 MPa BOREHOLE WITH LITHOLOGY MEERA PIER 7 BOREHOLES-GATEWAY BRIDGE - GATEWAY UPGRADE PROJECT.GPJ ENGINEERING BOREHOLE 09, 04.GDT 31/08/05 (44) ls(50)=0.60 MPa Is(50)=0.19 MPa SW Is(50)=0.86 MPa Brecciated zone ls(50)=0.27 MPa -65.13 SILTSTONE FINE GRAINED THINLY LAMINATED ls(50)=0.48 MPa SEDIMENTARY ROCK MW - SW : Pale grey to grey, fine grained SW thinly laminated, medium to high strength. -65.58 MUDSTONE FINE GRAINED THINLY LAMINATED Brecciated zone SEDIMENTARY ROCK HW - SW : Dark grey to black, fine grained, thinly laminated medium to high strength 100 HW (23)with very low to medium strength brecciated zones. Highly fractured throughout with some clay infilled brecciated zones. MW SW ls(50)≂1.56 MPa ls(50)=0.32 MPa НΝ Brecciated zone нW MW REMARKS SPT N values in gravel can overestimate density due to influence of coarser size gravel particles. This borelog should LOGGED BY

be read in conjunction with the appropriate Defect Description Sheets. Defect angles were measured with respect to a

A. DISSANAYAKE (DISS)

Class of Ouespeland (Description with the appropriate Defect Description Sheets.

FOR GEOTECHNICAL TERMS AND SYMBOLS REFER FORM F:GEOT 017/2-2004

BOREHOLE No	BH17
SHEET	<u>_14</u> of <u>_14</u> _
REFERENCE No	H9566

PROJECT GATEWAY UPGRADE PROJECT - GATEWAY BRIDGE DUPLICATION FOUNDATION INVESTIGATION PIER 7 - CENTRE OF PILE CAP LOCATION COORDINATES 10209.3 E; 167940.6 N SURFACE R.L. _-2.18 __. PROJECT No FG5388 DATE STARTED _08/05/05_ DATUM SETP ____ JOB No DATUM AHD DATE COMPLETED 13/05/05 DRILLER CAIRNS DRILLING RΙ ROD INTACT DEFECT K.L. (m) (m) CASING (w) WASH BORING CORE DRILLING ()% STRENGTH SPACING ADDITIONAL DATA (E) MATERIAL (mm)DEPTH AND DESCRIPTION CORE TEST RESULTS REC % <u>6</u>5 MUDSTONE Brecciated zone MW - MW : (As above). HW MW -67.68 (23) SILTSTONE Is(50)=0.21 MPa MW-MW-SW: Pale grey to grey, fine grained thinly lamianed, medium to high strength. SW -67.93 MUDSTONE (SHEARED) BOREHOLE WITH LITHOLOGY MEERA PIER 7 BOREHOLES-GATEWAY BRIDGE - GATEWAY UPGRADE PROJECT.GPJ. ENGINEERING BOREHOLE 09. 04.GDT. 31/08/05 FINE GRAINED THINLY LAMINATED Is(50)=0.88 MPa х SW SEDIMENTARY ROCK HW -SW : Dark grey to black, mainly very low strength, highly fractured throughout Is(50)=0.51 MPa with clay infilled brecciated zones. Exhibits engineering properties of clayey rockfill. ΗW Brecciated zone -70.08 100 Borehole terminated at 67.9m

REMARKS SPT N values in gravel can expressimate density due to influence of coarser size gravel particles. This borelog should be read in conjunction with the appropriate Defect Description Sheets. Defect angles were measured with respect to a horizontal plane.

Borehole No: BH 17
Start Depth: 28.50m
Finish Depth: 67.90m
Project No: FG 5388

Project: Gateway Upgrade Project - Gateway Bridge

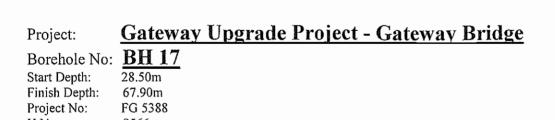
Borehole No: BH 17

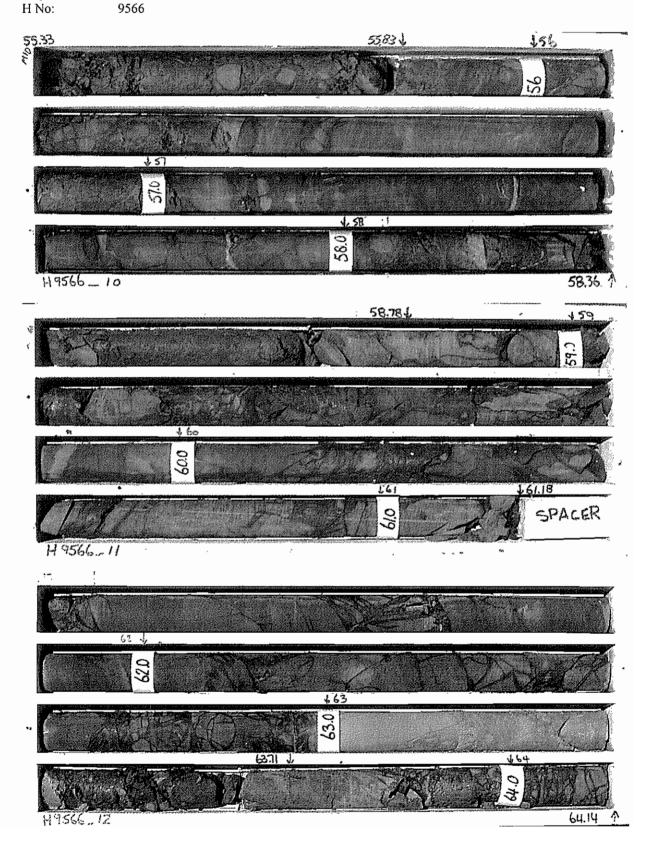
Start Depth: Finish Depth:

28.50m 67.90m FG 5388

Project No: H No:

9566


Project: Gateway Upgrade Project - Gateway Bridge


Borehole No: BH 17
Start Depth: 28.50m
Finish Depth: 67.90m

Project No: H No:

FG 5388 9566

Project: Gateway Upgrade Project - Gateway Bridge

Borehole No: BH 17
Start Depth: 28.50m
Finish Depth: 67.90m
Project No: FG 5388

Project No: FG 5388 H No: 9566

Geotechnical Branch

PROJECT

35 Butterfield Street HERSTON Q 4006 Phone: (07) 38343035 Fax: (07) 38343011

DEFECT DESCRIPTIONS OF ENGINEERING BORELOGS

[CHARACTERISATION OF DEFECTS ARE IN ACCORDANCE WITH ISRM SUGGESTED METHODS (1981)]

BOREHOLE NO : BH17

SHEET : 1 of 8

REFERENCE NO: H9566

GATEWAY BRIDGE FOUNDATION INVESTIGATION - GATEWAY UPGRADE PROJECT PIER 7 - CENTRE OF PIER LOCATION

PROJECT NO: FG5388 SURFACE R.L: -2.18 DRILLER : CAIRNS DRILLING PTY LTD

JOB NO DATUM AHD / SETP DATE DRILLED : 08/05/05 - 13/05/05

DEPTH	DEFECT TYPE	DIP	PLANARITY	ROUGHNESS	APERTURE	WALL ALTERATION	OTHER
28.5 - 28.57	BZ/WS	-	-	-	0	W	-
28.60	LP	<16°	P	5	0	-	-
28.64-28.67	BZ/WS	-	-		0-	W	Parallel to LP
28.80-29.07	BZ/WS	_	-	-	0	W	
29.12	LP	<20°	P	S	0	-	-
29.21	LP	<20°	P	S	0	-	DI
29.26	LP	<5°	P	S	С		DĪ
29.30-29.34	BZ/WS	-	-	-	0	w	-
29.40	LP	<10°	P	S	С	-	-
29.45-29.55	BZ/WS	<10°	P	S	0	W	Parallel to LP
29.60	BP/LP	<10°	P	S	Т	-	DĬ
29.62-29.71	BZ/WS	<15°	-	-	0	W	
29.85-30.00	BZ/WS	-	-	-	0	W	14
30.12	LP	<10°	P	S	С	-	DI
30.16-36.40	BZ/WS	-	-	-	0	W	-
30.57	LP	<10°	P	S	С	-	_
31.15-31.20	BZ/WS	-	-	-	0	W	CI
31.22	LP	<10°	P	S	С	-	15.5
31.27-31.62	BZ/WS	-	-	-	0	W	21
31.68	BP/LP	<10°	P	S	0	-	-
31.76	BP	<u>-</u>	-		0	-	Parallel to LP
31.89-31.91	BZ	-	-	-	0	-	Parallel to LF
32.08-32.16	BZ/WS	_	-	-	0	W	Parallel to LF

Abbreviations

	ROUGHNESS		WALL ALTERATIONS		TYPE		OTHER	
R	Rough	FeSt	Iron Stained	J	Joint	P	Partly	
Sm	Smooth	W	Weathered	В	Bedding	CL	Carbonaceous lamination	
SL	Slickensided	SM	SM Secondary Mineralisation		Bedding Parting	Co	Coal seam	
				FP	Foliation Parting	In	Incipient	
	PLANARITY AP		APERTURE	LP	Lamination Parting	SI	Sand Infill	
Pl	Planar	С	Closed	SZ	Sheared Zone	Н	Horizontal	
Şŧ	Stepped	0	Open	CZ	Crushed Zone	V	Vertical	
Un	Undulating	F	Filled	ws	Weathered Seam	CI	Clay Infill	
Cu	Curved	Т	Tight	BZ	Broken Zone	Cn	Clean	
Ir	bregular			HFZ	Highly Fractured Zone	CS	Clay Seam	
				Fr	Fracture	DI	Drilling Induced	

NOTE: This sheet should be read in conjunction with appropriate Engineering Borelog. Defect angles were measured with respect to horizontal plane.

Geotechnical Branch

LOCATION

35 Butterfield Street HERSTON Q 4006 Phone: (07) 38343035 Fax: (07) 38343011

DEFECT DESCRIPTIONS OF ENGINEERING BORELOGS

[CHARACTERISATION OF DEFECTS ARE IN ACCORDANCE WITH ISRM SUGGESTED METHODS (1981)]

BOREHOLE NO : BH17

SHEET : 2 of 8

REFERENCE NO: H9566

PROJECT : GATEWAY BRIDGE FOUNDATION INVESTIGATION - GATEWAY UPGRADE PROJECT

PIER 7 - CENTRE OF PIER

PROJECT NO: FG5388 SURFACE R.L: -2.18 DRILLER : CAIRNS DRILLING PTY LTD

JOB NO : DATUM : AHD / SETP DATE DRILLED : 08/05/05 - 13/05/05

DEPTH	DEFECT TYPE	DIP	PLANARITY	ROUGHNESS	APERTURE	WALL ALTERATION	OTHER
32.08-32.65	1	1.2	-	-	-	-	Coreloss
32.65-33.12	BZ/WS	-	-	-	0	W	Parallel to LP
33.25-33.41	BZ/WS	-	-	-	0	W	Parallel to LP
33.51	J	45°	P	S	С		=-
33.52	LP	<10°	P	S	0	-	-
33.71	LP	<10°	P	S	С	-	-
34.19-34.35	BZ/WS	-	-	-	0	W	Parallel to LP
34.43	LP	<10°	P	S	С		DÏ
34.51	LP	<10°	P	S	С	-	DI
34.69-34.74	BZ	-	-	-	0	-	Parallel to LP
34.90	LP	<10°	P	S	С		DI
34.94-34.97	BZ/WS	-	-	-	0	W	_
35.10	BP/LP	<10°	P	S	С	-	,
35.30	J	65°	P	S	С		CI
35.41	LP	<10°	P	S	0	-	CI
35.58	LP	<5°	P	-	T		DI
36.20-36.30	BZ/WS	-	-	-	0	W	-
36.35	LP	<15°	P	5	С		DI
36.40-36.45	BZ/WS	-	-	-	0		-
36.57	LP/BP	<5°	P	-	T	w	DI
36.59-36.65	BZ/WS	-	-	-	0	W	PCI
36.65-36.72							Coreloss
36.72-37.98	BZ/WS	-	-	-	0	w	PCI

Abbreviations

			7100101	tuttons			
	ROUGHNESS		WALL ALTERATIONS		ТҮРЕ		OTHER
R	Rough	FeSt	Iron Stained	3	Joint	P	Partly
Sm	Smooth	W	Weathered	В	Bedding	CL	Carbonaceous lamination
SL	Slickensided	SM	Secondary Mineralisation	ВР	Bedding Parting	Co	Coal seam
				FP	Foliation Parting	In	Incipient
	PLANARITY		APERTURE		Lamination Parting	SI	Sand Infill
Pl	Planar	С	Closed	SZ	Sheared Zone	Н	Horizontal
St	Stepped	0	Open	CZ	Crushed Zone	V	Vertical
Un	Undulating	F	Filled	ws	Weathered Seam	CI	Clay Infill
Cu	Curved	T	Tight	BZ	Broken Zone	Cn	Clean
Ir	Irregular			HFZ	Highly Fractured Zone	CS	Clay Seam
				Fr	Fracture	IQ	Drilling Induced

NOTE: This sheet should be read in conjunction with appropriate Engineering Borelog. Defect angles were measured with respect to horizontal plane.

Geotechnical Branch 35 Butterfield Street HERSTON Q 4006 Phone: (07) 38343035 Fax: (07) 38343011

DEFECT DESCRIPTIONS OF ENGINEERING BORELOGS

[CHARACTERISATION OF DEFECTS ARE IN ACCORDANCE WITH ISRM SUGGESTED METHODS (1981)]

BOREHOLE NO : BH17
SHEET : 3 of 8

REFERENCE NO: H9566

PROJECT : GATEWAY BRIDGE FOUNDATION INVESTIGATION - GATEWAY UPGRADE PROJECT
LOCATION : PIER 7 - CENTRE OF PIER

PROJECT NO: FG5388 SURFACE R.L: -2.18 DRILLER : CAIRNS DRILLING PTY LTD

JOB NO : DATUM : AHD / SETP DATE DRILLED : 08/05/05 - 13/05/05

DEPTH	DEFECT TYPE	DIP	PLANARITY	ROUGHNESS	APERTURE	WALL ALTERATION	OTHER
37.07	LP	<15°	St	S	0	-	-
37.45	Ј	60°-70°	Un	R	С		PCI
38.08	LP/BP	<15°	P	S	С	-	DI
38.25-38.29	BZ	-	-	-	С		DI
38.35	J	60°	St		Τ	-	Cv
38.45	LP/BP	15°	P	S	С		DI
38.51	LP	15°	P	S	С		DI
38.67-38.73	WS	-	-		0	W	
39.05	LP	<10°	Ir	- 4	0	-	CI
40.31	LP/BP	<5°	P	S	T	-	DI
40.55	LP	15°	Un	R	С	-	DI
40.53	BP/LP	<15°	W	S	С		DI, Co
40.75	LP	<10°	P	S	С	-	DI
40.79	LP	<10°	P	S	С	-	DI
40.87	LP	<10°	P	S	С		DI
40.92	LP	20°	Ir	R	С		DI
40.96	LP	<5°	P	S	С		DI
41.90	LP/BP	<15°	Р	R	С	-	DI
42.06	LP	35°	Р	R	С	-	CI
42.19	LP	25°	Un	R	С	_	DI
42.29	LP	<10°	Ir	R	С	-	DI
42.45	LP	<5°	P	R	Т	-	DI

Abbreviations

	Abbreviations											
	ROUGHNESS	,	WALL ALTERATIONS		TYPE		OTHER					
R	Rough	FeSt	Iron Stained	J	Joint	Р	Partly					
S	Smooth	w	Weathered	В	Bedding	CL	Carbonaceous lamination					
SL	Slickensided	SM	Secondary Mineralisation	BP	Bedding Parting	Co	Coal seam					
				FP	Foliation Parting	In	Incipient					
	PLANARITY APERTURE		APERTURE	LP	Lamination Parting	SI Sand Infill						
Ρl	Planar	С	Closed	SZ	Sheared Zone	Н	Horizontal					
St	Stepped	0	Open	CZ	Crushed Zone	V	Vertical					
Un	Undulating	F	Filled	WS	Weathered Seam	CI	Clay Infill					
Cu	Curved	Т	Tight	BZ	Broken Zone	Cn	Clean					
Ιr	Irregular			HFZ	Highly Fractured Zone	CS	Clay Seam					
				Fr	Fracture	DI	Drilling Induced					

NOTE: This sheet should be read in conjunction with appropriate Engineering Borelog. Defect angles were measured with respect to horizontal plane.

Geotechnical Branch 35 Butterfield Street HERSTON Q 4006 Phone: (07) 38343035 Fax: (07) 38343011

DEFECT DESCRIPTIONS OF ENGINEERING BORELOGS

[CHARACTERISATION OF DEFECTS ARE IN ACCORDANCE WITH ISRM SUGGESTED METHODS (1981)]

BOREHOLE NO : BH17
SHEET : 4 of 8

REFERENCE NO: H9566

PROJECT : GATEWAY BRII

GATEWAY BRIDGE FOUNDATION INVESTIGATION - GATEWAY UPGRADE PROJECT

LOCATION : PIER 7 – CENTRE OF PIER

PROJECT NO: FG5388 SURFACE R.L: -2.18 DRILLER: CAIRNS DRILLING PTY LTD

JOB NO : DATUM : AHD / SETP DATE DRILLED : 08/05/05 - 13/05/05

DEPTH	DEFECT TYPE	DIP	PLANARITY	ROUGHNESS	APERTURE	WALL ALTERATION	OTHER
42.55	J	<5°	Un	R	T	-	DI
42.68	LP/BP	10°	P	S	Т		DI
42.94	LP/BP	5°	P	S	Т	-	DI
43.33	LP/BP	5°	P	S	С	-	DI
43.43	LP/BP	5°	P	S	С	-	Со
43.83	LP	15°	P	R	С	-	DI
43.97	LP	<5°	P	R	С	-	DI
44.32	LP	<10°	P	R	J	-	DI
44.60	LP	<10°	P	R	C	-	DI
45.35-45.39	BZ	-		-	0	-	Со
46.0	LP	<15°	P	R	С	-	DI
46.27	BP	<10°	PP	S	Т	-	DI
46.50	LP	15°	P	S	C	-	DI
46.90	J	75°	P	S	С	-	DI
47.22	LP	10°	P	S	С	-	DI
47.30	LP	10°	P	S	С	-	DI
47.36	LP	15°	P	S	С	-	CI
47.54-48.10	SZ/BrZ	-	-	-	Т		CI
48.20-49.00	SZ/HFZ	-	-	-	T		CI healed
52.45-52.55	BZ	10°			С	(-)	Parallel to LP
52.60	LP	15°	P	S	0	-	DI
52.61	J	45°	P	S	0	<u> </u>	~
52.71	LP	15°	P	S	0	-	-

Abbreviations

	Aobreviations											
	ROUGHNESS	WALL ALTERATIONS			ТҮРЕ		OTHER					
R	Rough	FeSt	Iron Stained	J	Joint	Р	Partly					
S	Smooth	W	Weathered	В	Bedding	CL	Carbonaceous lamination					
SL	Slickensided	SM	Secondary Mineralisation	BP	Bedding Parting	Co	Coal seam					
				BrZ	Brecciated Zone	In	Incipient					
	PLANARITY		APERTURE		Lamination Parting	SI	Sand Infill					
Pl	Planar	С	Closed	SZ	Sheared Zone	H	Horizontal					
St	Stepped	0	Open	CZ	Crushed Zone	V	Vertical					
-Un	Undulating	F	Filled	WS	Weathered Seam	CI	Clay Infill					
Cu	Curved	Т	Tight	BZ	Broken Zone	Cn	Clean					
Ŀ	Irregular			HFZ	Highly Fractured Zone	CS	Clay Seam					
				Fr	Fracture	DI	Drilling Induced					

NOTE: This sheet should be read in conjunction with appropriate Engineering Borelog. Defect angles were measured with respect to horizontal plane.

Geotechnical Branch 35 Butterfield Street HERSTON Q 4006 Phone: (07) 38343035 Fax: (07) 38343011

DEFECT DESCRIPTIONS OF ENGINEERING BORELOGS

[CHARACTERISATION OF DEFECTS ARE IN ACCORDANCE WITH ISRM SUGGESTED METHODS (1981)]

BOREHOLE NO : BH17

SHEET : 5 of 8

REFERENCE NO: H9566

PROJECT

GATEWAY BRIDGE FOUNDATION INVESTIGATION - GATEWAY UPGRADE PROJECT

LOCATION

PIER 7 – CENTRE OF PIER

PROJECT NO:

FG5388

SURFACE R.L: -2.18

DRILLER

: CAIRNS DRILLING PTY LTD

JOB NO

DATUM

: AHD / SETP

DATE DRILLED : 08/05/05 - 13/05/05

рертн	DEFECT TYPE	DIP	PLANARITY	ROUGHNESS	APERTURE	WALL ALTERATION	OTHER
52.75	J	70°	Un	S	T		-
52.80-52.87	WS	-	-	-	·	W	-
52.90	LP	15°	P	S	С	-	CI
52.98	LP	15-30°	Cn	-	С	-	CI
53.48-53.52	BZ	-		-	0		
53.55	J	60°	P	S	С	-	
53.87	LP	25°	P	S	С		DI
53.91-53.94	WS	10-20°	Un	-	0	W	CI
54.04-54.28	BZ		-		С	_	CI
54.38-54.50	BZ/WS	-	-		С	W	CI
54.78	LP	20°	P	S	С	-	D
54.88-55.88	BrZ	MDJ	-	-	С	W	CI
56.05	J	55°	Р	S	С	-	CI
56.05	J	60°	P	S	С	-	CI
56.20-56.30	BrZ	MDJ	-	-	С	-	-
56.42	LP	30°	Un	S	С	-	DI
56.80-57.00	BrZ	-	_	-	С	-	CI
57.10-57.12	BrZ	-	-	S	С	_	CI
57.15	J	80°	P	_	С	-	-
57.20-57.23	BrZ	-	-	-	С	_	CI
57.25	J	70°	P	-	Т	-	Cv
57.48	LP	<10°	P	-	T	-	Cv, DI
57.78	LP	30°	P-Ir	S	С	-	-

Abbreviations

	ROUGHNESS	,	WALL ALTERATIONS		ТҮРЕ		OTHER
R	Rough	FeSt	Iron Stained	J	Joint	Р	Partly
S	Smooth	W	Weathered	MDJ	Multidirectional Joints	CL	Carbonaceous lamination
SL	Slickensided	SM	Secondary Mineralisation	BrZ	Brecciated Zones	Со	Coal seam
				FP Foliation Parting		Cv	Calcite vein
	PLANARITY		APERTURE		Lamination Parting	SI	Sand Infill
Pl	Planar	С	Closed	SZ	Sheared Zone	Н	Horizontal
St	Stepped	0	Open	CZ	Crushed Zone	V	Vertical
Un	Undulating	F	Filled	WS	Weathered Seam	CI	Clay Infill
Cu	Curved	τ	Tight	BZ	Broken Zone	Cn	Clean
ŀr	Irregular			HFZ Highly Fractured Zone		ÇS	Clay Seam
				Fr	Fracture	DI	Drilling Induced

NOTE: This sheet should be read in conjunction with appropriate Engineering Borelog. Defect angles were measured with respect to horizontal plane.

PROJECT

Geotechnical Branch 35 Butterfield Street HERSTON Q 4006 Phone: (07) 38343035 Fax: (07) 38343011

DEFECT DESCRIPTIONS OF ENGINEERING BORELOGS

[CHARACTERISATION OF DEFECTS ARE IN ACCORDANCE WITH ISRM SUGGESTED METHODS (1981)]

BOREHOLE NO : BH17
SHEET : 6 of 8

REFERENCE NO: H9566

GATEWAY BRIDGE FOUNDATION INVESTIGATION - GATEWAY UPGRADE PROJECT

LOCATION : PIER 7 - CENTRE OF PIER

PROJECT NO: FG5388 SURFACE R.L: -2.18 DRILLER: CAIRNS DRILLING PTY LTD

JOB NO : DATUM : AHD / SETP DATE DRILLED : 08/05/05 - 13/05/05

рертн	DEFECT TYPE	DIP	PLANARITY	ROUGHNESS	APERTURE	WALL ALTERATION	OTHER
57.85	LP/BP	35°	Ir	Ŝ	Т	-	Cv, DI
58.05-58.65	BrZ	MDJ	-	-	С	-	CI
58.74	J	20-35°	Un	S	С	83 - 03	CI
58.92-59.20	BrZ	MDJ	-		-	-	CI
59.78-60.40	J	70-90°	Un	-	С	_	CI
60.15-60.32	SZ	-	-	•	1	-	-
60.44-60.65	BZ	MDJ	P	S	С	-	CI
60.90-60.95	BZ	70°	120	-	С		CI
61.10-61.18	BZ	MDJ	-	-	C?		CI
61.18-61.33	BZ	-	-	-	-	-	DI
61.45	J	65°	P	S	T	-	DI
61.55	J	45°	P	S	Т	-	DI
61.60	J	60°	P	S	T	-	DI
61.62	J	70°	P	S	C	-	
61.70-61.74	BZ/WS	-		-	0	W	CI
61.75	J	40°	P	S	Т	-	DI
62.07	LP	25°	P	S	T	- 4	DI
62.18	J	45°	St	S	0	-	-
62.30	J	60°	P	S	0		
62.40	LP	25°	P	S	Т	-	DI
62.40	J	40°	P	S	T	-	DI
62.45	J	50°	P	S	Т	- h	-

Abbreviations

		Audici	interiors				
ROUGHNESS		WALL ALTERATIONS		ТУРЕ		OTHER	
Rough	FeSt	Iron Stained	J	Joint	P	Partly	
Smooth	W	Weathered	MDJ	Multidirectional Joints	CL	Carbonaceous lamination	
Slickensided	SM	Secondary Mineralisation	BrZ	Brecciated Zones	Со	Coal seam	
			FP	Foliation Parting	Cv	Calcite vein	
PLANARITY APERTU		APERTURE	LP	Lamination Parting	SI	Sand Infill	
Planar	С	Closed	SZ	Sheared Zone	Н	Horizontal	
Stepped	0	Open	CZ	Crushed Zone	V	Vertical	
Undulating	F	Filled	WS	Weathered Seam	CI	Clay Infill	
Curved	Т	Tight	BZ	Broken Zone	Cn	Clean	
Irregular			HFZ	Highly Fractured Zone	CS	Clay Seam	
			Fr	Fracture	DI	Drilling Induced	
	Rough Smooth Slickensided PLANARITY Planar Stepped Undulating Curved	Rough FeSt Smooth W Slickensided SM PLANARITY Planar C Stepped O Undulating F Curved T	ROUGHNESS Rough FeSt Iron Stained Smooth W Weathered Slickensided SM Secondary Mineralisation PLANARITY APERTURE Planar C Closed Stepped O Open Undulating F Filled Curved T Tight	ROUGHNESS Rough FeSt Iron Stained J Smooth W Weathered MDJ Slickensided SM Secondary Mineralisation BrZ PLANARITY APERTURE LP Planar C Closed SZ Stepped O Open CZ Undulating F Filled WS Curved T Tight BZ Irregular	Rough FeSt Iron Stained J Joint Smooth W Weathered MDJ Multidirectional Joints Slickensided SM Secondary Mineralisation BrZ Brecciated Zones FP Foliation Parting PLANARITY APERTURE LP Lamination Parting Planar C Closed SZ Sheared Zone Stepped O Open CZ Crushed Zone Undulating F Filled WS Weathered Seam Curved T Tight BZ Broken Zone Irregular HFZ Highly Fractured Zone	ROUGHNESS WALL ALTERATIONS FeSt Iron Stained J Joint P Smooth W Weathered MDJ Multidirectional Joints CL Slickensided SM Secondary Mineralisation BrZ Brecciated Zones Co FP Foliation Parting Cv PLANARITY APERTURE LP Lamination Parting SI Planar C Closed SZ Sheared Zone H Stepped O Open CZ Crushed Zone V Undulating F Filled WS Weathered Seam CI Curved T Tight BZ Broken Zone CS CS	

NOTE: This sheet should be read in conjunction with appropriate Engineering Borelog. Defect angles were measured with respect to horizontal plane.

Geotechnical Branch 35 Butterfield Street HERSTON Q 4006 Phone: (07) 38343035 Fax: (07) 38343011

DEFECT DESCRIPTIONS OF ENGINEERING BORELOGS

[CHARACTERISATION OF DEFECTS ARE IN ACCORDANCE WITH ISRM SUGGESTED METHODS (1981)]

BOREHOLE NO : BH17 SHEET : 7 of 8

REFERENCE NO: H9566

GATEWAY BRIDGE FOUNDATION INVESTIGATION - GATEWAY UPGRADE PROJECT PIER 7 - CENTRE OF PIER LOCATION

PROJECT

PROJECT NO: FG5388 SURFACE R.L: -2.18 DRILLER : CAIRNS DRILLING PTY LTD

JOB NO **DATUM** AHD / SETP DATE DRILLED : 08/05/05 - 13/05/05

DEPTH	DEFECT TYPE	DIP	PLANARITY	ROUGHNESS	APERTURE	WALL ALTERATION	OTHER
62.56-62.62	FZ	MDJ	-	<u> 1</u>	T		CI
62.65	J	80°	P	S	Т		DI
62.65-62.98	BrZ	-	-	_	C	W	CI
63.15	J	75°	P	-	Т	-	-
63.18-63.21	_	~) -	-	Т	W	CS
63.21-63.40	BrZ	-	-	-	Т	-	CI, Healed
63.40-63.71	BrZ	-	_	-	0	-	CI
63.75	J	75°	P	S	С	~	CI
63.84-64.10	BZ	-	-	-	0	-	CI
64.12	J	60°	P	S	T	-	DĪ
64.16	LP	<10°	P	S	С		DI
64.20	LP	<15°	Un	-	С		CI
64.22	LP	15°	Р	S	-	- 1	CI
64.30	J	40°	P	S	С	-	CI
64.30	LP	35°	Un	-	С	-	CI
64.33	LP	15°	Ir	-	С	-	PCI
64.37	LP	20°	P	-	С	-	CI
64.42	LP	15°	P	S	С	-	-
64.50-64.65	SZ	65°	P	-	C-T	-	CI, Healed
64.65-65.25	HFZ	MDJ	- 1	-	O-C	_	CI
65.55	j	60°	P	S	Т	_	
65.60	LP	<5°	P	-	Т	-	

Abhroviations

	Abbreviations								
ROUGHNESS		,	WALL ALTERATIONS		TYPE		OTHER		
R	Rough	FeSt	Iron Stained	J	Joint	P	Partly		
S	Smooth	W	Weathered	MDJ	Multidirectional Joints	CL	Carbonaceous lamination		
SL	Slickensided	SM	Secondary Mineralisation	BrZ	Brecciated Zones	Co	Coal seam		
				FP	Foliation Parting	In	Incipient		
	PLANARITY APERTURE		LP	Lamination Parting	SI	Sand Infill			
P1	Planar	С	Closed	SZ	Sheared Zone	IH.	Horizontal		
St	Stepped	0	Open	CZ	Crushed Zone	V	Vertical		
Un	Undulating	F	Filled	WS	Weathered Seam	CI	Clay Infill		
Си	Curved	T	Tight	BZ	Broken Zone	Cn	Clean		
lr	Irregular			HFZ	Highly Fractured Zone	CS	Clay Seam		
				Fr	Fracture	DI	Drilling Induced		

NOTE: This sheet should be read in conjunction with appropriate Engineering Borelog. Defect angles were measured with respect to horizontal plane.

Geotechnical Branch 35 Butterfield Street HERSTON Q 4006 Phone: (07) 38343035 Fax: (07) 38343011

DEFECT DESCRIPTIONS OF ENGINEERING BORELOGS

[CHARACTERISATION OF DEFECTS ARE IN ACCORDANCE WITH ISRM SUGGESTED METHODS (1981)]

BOREHOLE NO : BH17 SHEET : 8 of 8 REFERENCE NO: H9566

PROJECT

: GATEWAY BRIDGE FOUNDATION INVESTIGATION - GATEWAY UPGRADE PROJECT

LOCATION

: PIER 7 - CENTRE OF PIER

PROJECT NO

FG5388

SURFACE R.L: -2.18

DATUM

DRILLER

: CAIRNS DRILLING PTY LTD

JOB NO

AHD / SETP

DATE DRILLED : 08/05/05 - 13/05/05

DEPTH	DEFECT TYPE	DIP	PLANARITY	ROUGHNESS	APERTURE	WALL ALTERATION	OTHER
65.75	J	60°	P	S	Ţ	-	CI
65.78	J	60°	P	S	Т		Cv
65.80	LP	10°	P	S	Т	-	DI
65.90	LP	15°	P	S	С	-	-
66.07-67.90	BrZ	MDJ	-	-	С	-	CI
	- 2290300						
				- 4			

Abbreviations

ROUGHNESS WALL ALTERATIONS		ТҮРЕ		OTHER			
R	Rough	FeSt	Iron Stained	J	Joint	P	Partly
S	Smooth	W	Weathered	MDJ	Multidirectional Joints	CL	Carbonaceous lamination
SL	Slickensided	SM	Secondary Mineralisation	BrZ	Brecciated Zones	Co	Coal seam
				FP	Foliation Parting	Cv	Calcite Vein
PLANARITY		APERTURE	LP	Lamination Parting	SI	Sand Infill	
Pl	Planar	С	Closed	SZ	Sheared Zone	Н	Horizontal
St	Stepped	0	Open	CZ	Crushed Zone	V	Vertical
Un	Undulating	F	Filled	WS	Weathered Seam	CI	Clay Infill
Cu	Curved	Ť	Tight	BZ	Broken Zone	Cn	Clean
Ir	Irregular			HFZ	Highly Fractured Zone	CS	Clay Seam
				Fr	Fracture	Ιď	Drilling Induced

NOTE: This sheet should be read in conjunction with appropriate Engineering Borelog. Defect angles were measured with respect to horizontal plane.