COPYRIGHT NOTICE

This geotechnical log and its associated data (the Document) is licensed by the Cross River Rail Delivery Authority under the <u>Creative Commons Attribution 4.0 Licence</u> (CC BY 4.0). When reusing the Document, in whole or in part, please attribute as follows: "*(c) Cross River Rail Delivery Authority 2023, licensed under the CC BY 4.0 Licence, prepared by Soil Surveys*". This licence does not apply to logos or trademarks.

LIMITATION OF LIABILITY

The CC BY 4.0 Licence contains a comprehensive Disclaimer of Warranties and Limitation of Liability. In addition, please note that this Document was prepared for the Cross River Rail Delivery Authority use only. Reuse of the Document by anyone for any other purpose could result in error and/or loss. You should obtain professional advice before making decisions based on the contents of the Document.

When reproducing any part of this Document, you must also reproduce this limitation of liability notice in addition to the italicised attribution statement above.

Retrieved from the Queensland Geotechnical Database http://qgd.org.au/

7

Soil Surveys Engineering Pty. Limited BOREHOLE RECORD SHEET

Milton: ph +61 7 3669 6000 brisbane@soilsurveys.com.au Gold Coast: ph +61 7 5500 0465 goldcoast@soilsurveys.com.au Northern Rivers: ph +61 7 5523 4577 northernrivers@soilsurveys.com.au Mackay. ph +61 7 4942 2907 mackay@soilsurveys.com.au

SOIL SURVEYS

Easting: 503217Northing: 6960886RL: -5.67 mLogger: DA/DTOperator: DA/SOMachine:Scout 2

Location Number: BH 312 Project Number: 110-12936 Project Name: Cross River Rail Location: Brisbane

Client: AECOM Date: 05/01/2012

Page: 1 OF 5

1

Soil Surveys Engineering Pty. Limited Specialist in Applied Geotechnics

Milton: ph +61 7 3369 6000 brisbane@soilsurveys.com.au Gold Coast: ph +61 7 5500 0465 goldcoast@soilsurveys.com.au Northern Rivers: ph +61 7 5523 4577 northernrivers@soilsurveys.com.au Mackay. ph +61 7 4942 2907 mackay@soilsurveys.com.au

SOIL SURVEYS

Easting: 503217Northing: 6960886RL: -5.67 mLogger: DA/DTOperator: DA/SOMachine:Scout 2

BOREHOLE RECORD SHEET

Location Number: BH 312

Project Number: 110-12936 Project Name: Cross River Rail Location: Brisbane Client: AECOM Date: 05/01/2012

Page: 2 OF 5

						Weathering Estimated		Defect	ect (%) monositions monosition		Samples and			
C	WB	RR NMLC Casing	Dept	th Graphic		Description		Weathering	Estimated	Spacing 20 60 200 600	Rec	RQD	Remarks	
SURVEY BOREHOLE LOG 111-12936 NEW.GPJ < <drawingfile>> 21/05/2012 14:32 8.30.002 Developed by Datgel</drawingfile>			<u>11.0</u> <u>12.0</u> <u>13.0</u> <u>14.0</u> <u>15.0</u> <u>16.0</u> <u>17.0</u> <u>18.0</u>	14.10 0000 15.10 16.25 0000 0000 16.25 00000 0000 0000 0000 0000 0	Sandy GRAVE coarse size, gr sand. TUFF (DW) M fractured, with Sandy GRAVE coarse size, gr sand. Clayey SAND dark grey, higt	C (SP) Medium dense d, grey brown, fine si EL (GP) Medium den rey brown, fine to coa oderately strong, bro some clay seams. EL (GP) Dense, fine to coarse grained RATE (DW) Strong, g (SC) Dense, fine to co plasticity fines, with gravel from 17.65m.	ze gravel. se, fine to arse grained wn, highly o coarse size, sand. rey mottled. coarse grained,							
SURVEYS_00 LIBRARY 2012-05.GLB_L0g_SOIL_SURVEY_BOREH			 <u>19</u> .0	18.10 18.70 19.27 19.39 200 19.27 19.39 200 200 200 200 200 200 200 20	of tuff, quartzit	to coarse size, with e and metasediment 0.57m (18.70-19.27) to coarse size, with	S.	DW			49	0	1934 m [.] I 70° P.S.O.7	
RARY 2012-05.0			 	· ·		e and metasediment	s	SW			100	85	19.34 m; J, 70° , P, S, O, Z 19.39 m; J, 25° , S, R, O, Z 19.70 m; B, 14° , P, S, O, Z	
SURVEYS 00 LIB		nment rilled fro bed le NMLC.		parge - all depth the coring met grouted on cor	is measured from hod used was NQ3 npletion.	Depth (m) Type Dip (dep) Planarity B - Bedding (dep) Planarity C - Clay seam H - Schatsonity S - Subplanar J - Cleavage T - Stepped R - Planar U - Undulating	Roughness Aperature Infili L-Silckensides C-Closed P-Polished F-Filled F-Iron Co S-Smooth O-Ogen L-Limoni V-Veryrough S-Stein U-Unider	dde e te tary mineral tified mineral	Veathering Gr RS - Residual S W - Extremely wea W - Distinctly wea SW - Slightly weath FR - Fresh Rock Strened W - Very wea W - Very weak	oil thered hered hered th	ample U5 SP	0	Approved	
	<u>⊽</u> _	/ater Fir	st Noted	- Water Steady L	evel	S - Shear zone T - Contact V - Vein Z - Decomposed Zone DI - Dniling Induced break		hered rock naceous	MS - Medium stro S - Strong VS - Very stron ES - Extremely str	· DI	sturbe Sampl		Approved: Date:	

Soil Surveys Engineering Pty. Limited Specialist in Applied Geotechnics

Milton: ph +61 7 3369 6000 brisbane@soilsurveys.com.au Gold Coast: ph +61 7 5500 0465 goldcoast@soilsurveys.com.au Northern Rivers: ph +61 7 5523 4577 northernrivers@soilsurveys.com.au Mackay. ph +61 7 4942 2907 mackay@soilsurveys.com.au

SOIL SURVEYS

Easting: 503217 Northing: 6960886 RL: -5.67 m Logger: DA/DT Operator: DA/SO Machine: Scout 2 BOREHOLE RECORD SHEET

Location Number: BH 312

Project Number: 110-12936 Project Name: Cross River Rail Location: Brisbane Client: AECOM Date: 05/01/2012

Page: 3 OF 5

Drilling	Method		ic					Strength		Defect %	(%	0	Samples and	
WB	RR NMLC Casing	Depth	Graphic	Description	Weathering	Estimated	· ·	Rec (%)	RQD	Samples and Remarks				
		<u>2</u> 1.0		SANDSTONE, medium grained, light grey, granular, medium bedded, closely to moderately spaced fractures, 5mm thick coal bed at 20.46m. (continued) CONGLOMERATE, coarse grained, pale grey with some darker clasts, granular, very thickly bedded, closely spaced to moderately widely spaced fractures. Clasts are fine to medium gravel sized, trace of coarse gravel of sub-rounded siltstone, sandstone and quartz. Clast supported.	FR			100	85	20.28 m; DI, 3° , P, R, O, Z 20.39 m; B, 11° , P, S, O, Z 20.46 m; V 2° , P, R, O, Z 20.52 m; J 23° , P, R, O, Z 20.55 m; DI, 77° , S, R, O, Z 20.75 m, is50 = 0.55 MPa 21.36 m; DI, 40° , S, R, O, Z 21.58 m; DI, 20° , S, R, O, Z 21.91 m; B, 14° , S, R, O, Z 22.2m, is50 = 0.54 MPa 22.45 m; J, 21° , P, R, O, Z				
21/05/2012 14:32 8.30.002 Developed by Datgel		 	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	CONGLOMERATE, coarse grained, pale grey with some darker clasts, granular, very thickly bedded, very closely spaced to moderately widely spaced fractures. Clasts are medium to coarse gravel sized, sub-rounded, of siltstone, phyllite,				100	75	22.68-23.10 m; DI, 2°, S, R, O, Z 23.20 m; B, 14° , P, R, O, Z 23.45 m; DI, 30° , U, R, O, Z 23.66 m; J, 20° , P, R, O, Z 24.19 m; DI, 25° , P, R, O, Z 24.59 m, IS50 = 0.8 MPa 24.59 m, ID, 15° , P, R, O, Z 24.50 m; DI, 15° , P, R, O, Z 25.04 m; DI, 30° , S, R, O, Z				
111-12936 NEW.GPJ < <drawingfile>></drawingfile>		<u>26</u> .0 <u>2</u> 7.0 <u>2</u> 8.0		25.59m. Mudstone band from 25.59m to 25.66m. Medium to coarse sandstone lenses from 25.80m to 25.86m. Quartzite band from 26.84m to 26.90m.				100	80	25.46-26.76 m; Dl, 5° , S, R, O, Z 26.45m, ls50 = 0.93 MPa 26.85 m; J, 10° , C, S, O, Z 27.43 m; Dl, 60° , C, R, O, Z				
_	nments	29.0 29.15 29.51 29.51 30.0		CONGLOMERATE, coarse grained, pale grey with some darker clasts, granular, very thickly bedded, moderately widely spaced fractures. Clasts are medium to coarse gravel sized, sub-rounded, of siltstone, sandstone and quartz. Clast supported. Interlaminated SILTSTONE and MUDSTONE, fine grained, alternating pale grey and dark grey, granular, thinly laminated, closely spaced fractures, some fine sandstone laminae and coal Defects - 1.54m : F.60°, P.R.O.C	3	Vectoring Gr RS - Resulta S W - Externely weat	bil thered hered	102 99 amples	91 S	28.23 m; DI, 35° , S, R, O, Z 28.59m, Is50 = 1.48 MPa 28.89 m; DI, 2° , P, R, O, Z 29.15 m; J, 9° , P, R, O, Z 29.56m, Is50 = MPa 29.8m, Is50 = 0.25 MPa				
not N		m floating barge - al el. 2) Note: the corir) Borehole grouted t NotedWater S		L - Cleavage T - Skepped V - Very rough S - Stain G - Cuu R - Fracture U - Undutating S - Stain G - Cuu S - Shear zone - Undutating U - Stain V - Vondact V - VV	Oxide cite onite trtz ondary mineral fentified mineral sathered rock ponaceous	SW - Slightly weath FR - Fresh Rock Streng WV - Very weat W - Weak MS - Medium stro S - Strong VS - Very strong ES - Extremely stro	nt h ^k Dis	U50 SP1 sturbeo Sample		Approved: Date:				

(c) Cross River Rail Delivery Authority 2023, CC BY 4.0. Please note copyright and limitation of liability notices on attached cover page.

Soil Surveys Engineering Pty. Limited BOREHOLE RECORD SHEET

Milton: ph +61 7 3369 6000 brisbane@solisurveys.com.au Gold Coast: ph +61 7 5500 0465 goldcoast@solisurveys.com.au Northem Rivers: ph +61 7 5523 4577 northernrivers@solisurveys.com.au Mackay. ph +61 7 4942 2907 mackay@solisurveys.com.au

SOIL SURVEYS

Easting: 503217Northing: 6960886RL: -5.67 mLogger: DA/DTOperator: DA/SOMachine:Scout 2

Location Number: BH 312 Project Number: 110-12936 Project Name: Cross River Rail Location: Brisbane Client: AECOM Date: 05/01/2012

Page: 4 OF 5

D		g Method		hic			Strength	Defect	(%)	0	Samples and
TC	WB	RR NMLC Casing	Depth	Graphic	Description	Weathering	Estimated	Spacing 20 60 200 600	Rec (%)	RQD	Remarks
			<u>3</u> 2.0 <u>3</u> 3.0 33.00		stringers. Interbedded SANDSTONE and SILTSTONE, fine grained, alternating pale grey and dark grey, granular, laminated to thinly bedded, closely spaced to moderately widely spaced fractures, with some coal stringers. <i>(continued)</i>	FR			99	91	31.87m, Is50 = 2.49 MPa
< <drawingfile>> 21/05/2012 14:32 8:30.002 Developed by Datgel</drawingfile>			<u>34</u> .0 <u>35</u> .0 <u>35</u> .0		Interlaminated SILTSTONE and MUDSTONE, fine grained, alternating pale grey and dark grey, thinly laminated, moderately widely spaced fractures, some fine sandstone laminae, coal bed from 39.65m to 39.70m.				100	97	33.25m, Is50 = 0.77 MPa 34.42m, Is50 = 0.8 MPa 29.26-40.32 m; B, 2°, P, S, O, Z 35.55m, Is50 = 0.65 MPa
SOIL_SURVEY_BOREHOLE_LOG_111-12936 NEW.GPJ			<u>37</u> .0 <u>38</u> .0						100	95	36.4m, Is50 = 1.36 MPa
		mment Drilled fro NMLC. :	s: m floating barge - al Borehole grouted	l depthe	L - Cleavage U - Undulating S - Stain Q - Quartz	de e	deathering Grz Re3-Residual So Weak Weak Signity weath Signity weath Signity weath Signity weath Signity W- Signity weath W- Very weak W- Very weak W- Very weak	ades Sa intered iered iered ired	99 ample U5 SP	0	39.5m, Is50 = MPa
_	<u>⊽</u> _v	Vater Firs	st Noted 💻 Water S	teady Le	S - Shear zone U - Unidem T - Contact W - Weath V - Vein X - Carbon	aceous	MS - Medium stron S - Strong VS - Very strong ES - Extremely strong	Dis	sturbe Sampl		Approved: Date:

Soil Surveys Engineering Pty. Limited Specialist in Applied Geotechnics

Milton: ph +61 7 3369 6000 brisbane@soilsurveys.com.au Gold Coast: ph +61 7 5500 0465 goldcoast@soilsurveys.com.au Northern Rivers: ph +61 7 5523 4577 northernrivers@soilsurveys.com.au Mackay: ph +61 7 4942 2907 mackay@soilsurveys.com.au

SOIL SURVEYS

Easting: 503217 Northing: 6960886 RL: -5.67 m Logger: DA/DT Operator: DA/SO Machine: Scout 2

BOREHOLE RECORD SHEET

Location Number: BH 312

Project Number: 110-12936 Project Name: Cross River Rail Location: Brisbane Client: AECOM Date: 05/01/2012

Page: 5 OF 5

Drilling Method MBLC Casing Casing	Depth	Graphic		Description		Weathering	RS/WW MS S VSES 20 60 200 600			RQD	Samples and Remarks
	 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	some darker cl fragmented to are fine to mec coarse gravel, mudstone and	ATE, coarse graine lasts, granular, very closely spaced frac dium gravel sized, v sub-rounded, of sil phyllite, with trace ast supported. Interl	thickly bedded, tures. Clasts vith some tstone, of quartz and	FR			99	75	40.46 m; DI, 4°, S. R. O, Z 40.6m, Is50 = 0.37 MPa 40.54 m, DI, 6°, S. R. O, Z 40.67 m; DI, 9°, S. R. O, Z 40.83 m; J. 2°, P. S. O, Z
			siltstone and s and 41.29m to 40 83m to 40 8	andstone from 40.2 41.39m. Mudstone 36m and 41.23m to	0m to 40.33m lenses from				98	63	41.2m, Is50 = 0.82 MPa 41.13 m; DI, 4 °, P, R, O, Z 41.24 m; B, 20° , P, S, O, Z 41.27 m; B, 34 °, U, S, O, Z
	<u>42</u> .0		Interlaminated fine grained, al granular, thinly closely spaced	SILTSTONE and M Iternating pale grey v laminated, fragme I fractures, fine grai 2.09m to 42.23m, 42 42.68m	and dark grey, nted to very ned sandstone				99	60	42.12 m; J, 19° , P, S, O, Z 41.71-42.65 m; B, 2° , P, S, O, Z
	<u>43</u> .0		CONGLOMER with some dark bedded, closel	ATE, coarse graine ker clasts, granular, y spaced fractures.	very thickly Clasts are fine						42.75m, Is50 = 1.48 MPa 42.85m, Is50 = 1.95 MPa 42.94 m; DI, 8 °, S, R, O, Z
	- - - -	0000	of sub-rounded Clast supporte	vel sized, with som d siltstone, sandsto d. 3H 312 TERMINAT	ne and quartz.						43.21 m; J, 26° , P, R, O, Z 40.32 m; Dl, 6° , P, S, O, Z
	<u>- 44</u> .0 - - - - -										
	 <u>46</u> .0										
	<u>47</u> .0										
	<u>48</u> .0										
Comments 1) Drilled fro river bed lev not NMLC. 3	<u>49</u> .0										
Comments				Defects - 1.54	Im : F,60°,P,R,O,C		Veathering Gr	oil lio	Sample	es	
	m floating barge - al rel. 2) Note: the corir 3) Borehole grouted	l depths ng meth on com	s measured from od used was NQ3 pletion.	R - Fracture 0 * Ondurating S - Shear zone T - Contect	V - Very rough S - Stain Q - Quartz S- Second	ide te dary mineral	W - Extremely weat DW - Distinctly weat FR - Fresh Rock Streng W - Very weat W - Very weat W - Medium strc C - Strong	nered Ith k	U5 SF Disturbe	т	Approved:
– <u>▼</u> Water Firs	st Noted 💻 Water St	teady Le	vel	V - Vein Z - Decomposed Zone DI - Drilling Induced break	A - Carbor Z - Clean		S - Strong VS - Very strong ES - Extremely str	g	Samp		Date:

(c) Cross River Rail Delivery Authority 2023, CC BY 4.0. Please note copyright and limitation of liability notices on attached cover page.

(c) Cross River Rail Delivery Authority 2023, CC BY 4.0. Please note copyright and limitation of liability notices on attached cover page.

IN-SITU PACKER PERMEABILITY TEST RESULT

PROJECT: PROJECT No.:	CRR 110-12936	BH No.: Test No.: Date:	312 1 9/01/2012		Packer type: Packer pressure: Gauge pressures Tested by:		Double 2000kPa kPa CS	
Vertical depth to:	Top of test section	(m):	34.00		Depth of centre o	f test section (m):	35.25	
(below bed level)	Base of test sectio	n (m):	36.50		Length of test sec		2.50	
,	Centre of test sect	ion(m):	35.25					
	Base of casing (m)	:	33.00		(m):			
	Ground water (m)		TIDAL		Hole Diameter in	-		
						. ,		
	1st period	Time (mins)	0	5	10	15	Average	
	Gauge Pressure	Flow reading	1031.4	1032.2	1033.0	1034.0	Flow (l/min)	
	100	Water Take	0.00	0.80	0.80	1.00	0.173	
	2nd period	Time (mins)	0	5	10	15	Average	
	Gauge Pressure	Flow reading	1036.0	1037.0	1037.6	1038.5	Flow (I/min)	
	200	Water Take	0.00	1.00	0.60	0.90	0.167	
	3rd period	Time (mins)	0	5	10	15	Average	
	Gauge Pressure	Flow reading	1039.5	1040.5	1041.5	1041.6	Flow (l/min)	
	300	Water Take	0.00	1.00	1.00	0.10	0.140	
	4th period	Time (mins)	0	5	10	15	Average	
	Gauge Pressure	Flow reading	1041.5	1041.5	1041.5	1041.5	Flow (l/min)	
	200	Water Take	0.00	0.00	0.00	0.00	0.000	
	5th period	Time (mins)	0	5	10	15	Average	
	Gauge Pressure	Flow reading					Flow (l/min)	
	100	Water Take	0.00	0.00	0.00	0.00	0.000	
Period	Flow (q)	Gauge Press	Gauge Press	Friction Los	ss (m)*	Total Head	Lugeon	
	(l/min)	(kPa)	(m of water)	Basic	In extra rods	(m)	Value	

Period	Flow (q)	Gauge Press	Gauge Press	Friction Loss (m)*		Total Head	Lugeon	Perm.
	(l/min)	(kPa)	(m of water)	Basic In extra rods		(m)	Value	(m/s)
1st	0.173	100.00	10.220	0.000	0.000	45.470	0.156	1.70E-08
2nd	0.167	200.00	20.440	0.000	0.000	55.690	0.122	1.33E-08
3rd	0.140	300.00	30.660	0.000	0.000	65.910	0.087	9.45E-09
4th	0.000	200.00	20.440	0.000	0.000	55.690	0.000	0.00E+00
5th	0.000	100.00	10.220	0.000	0.000	45.470	0.000	0.00E+00

*Where friction loss is assumed to be negligible.

N.B. Pressure Conversion: 1 bar = 100 kPa = 14.503 psi

Note - zero flow in period 4 - test ended

IN-SITU PACKER PERMEABILITY TEST RESULT

PROJECT: PROJECT No.:	CRR 110-12936	BH No.: Test No.: Date:	312 2 9/01/2012		Packer type: Packer pressure: Gauge pressures Tested by:		Double 2000kPa kPa CS	
Vertical depth to:	Top of test section	(m):	25.00	1	Depth of centre o	f test section (m):	26.25	
(below river bed)	Base of test sectio	n (m):	27.50		Length of test sec	ction (m):	2.50	
·	Centre of test sect	ion(m):	26.25		Ŭ			
	Base of casing (m)		24.00					
	Ground water (m)		TIDAL		test section (mm)			
				1				
	1st period	Time (mins)	0	5	10	15	Average	
	Gauge Pressure	Flow reading	1045.8	1046.1	1046.5	1046.9	Flow (I/min)	
	100	Water Take	0.00	0.30	0.40	0.40	0.073	
	2nd period	Time (mins)	0	5	10	15	Average	
	Gauge Pressure	Flow reading	1049.5	1050.5	1052.0	1053.5	Flow (I/min)	
	200	Water Take	0.00	1.00	1.50	1.50	0.267	
	3rd period	Time (mins)	0	5	10	15	Average	
	Gauge Pressure	Flow reading	1053.9	1054.0	1054.0	1054.0	Flow (I/min)	
	300	Water Take	0.00	0.10	0.00	0.00	0.007	
	4th period	Time (mins)	0	5	10	15	Average	
	Gauge Pressure	Flow reading	1054.0	1054.0	1054.0	1054.0	Flow (l/min)	
	200	Water Take	0.00	0.00	0.00	0.00	0.000	
	5th period	Time (mins)	0	5	10	15	Average	
	Gauge Pressure	Flow reading					Flow (I/min)	
	100	Water Take	0.00	0.00	0.00	0.00	0.000	
			•					
Period	Flow (q)	Gauge Press	Gauge Press	Friction Los	. ,	Total Head	Lugeon	
	(l/min)	(kPa)	(m of water)	Basic	In extra rods	(m)	Value	

Period	Flow (q)	Gauge Press	Gauge Press	Friction Loss (m)*		Total Head	Lugeon	Perm.
	(l/min)	(kPa)	(m of water)	Basic In extra rods		(m)	Value	(m/s)
1st	0.073	100.00	10.220	0.000	0.000	36.470	0.082	8.95E-09
2nd	0.267	200.00	20.440	0.000	0.000	46.690	0.233	2.54E-08
3rd	0.007	300.00	30.660	0.000	0.000	56.910	0.005	5.21E-10
4th	0.000	200.00	20.440	0.000	0.000	46.690	0.000	0.00E+00
5th	0.000	100.00	10.220	0.000	0.000	36.470	0.000	0.00E+00

*Where friction loss is assumed to be negligible.

N.B. Pressure Conversion: 1 bar = 100 kPa = 14.503 psi

Note - zero flow in period 4 - test ended